The Power of Quantum Fourier Sampling

Bill Fefferman

QuICS, University of Maryland/NIST

Joint work with Chris Umans (Caltech)

Based on arxiv:1507.05592

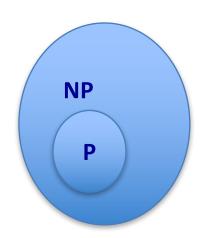
I. Complexity Theory Basics

Classical Complexity Theory

- P
 - Class of problems efficiently solved on classical computer
- NP
 - Class of problems with efficiently checkable solutions
 - Characterized by SAT
 - Input: $\Psi:\{0,1\}^n \to \{0,1\}$
 - n-variable 3-CNF formula

» E.g.,
$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor -x_2 \lor x_6) \land \dots$$

- Problem: $\exists x_1, x_2, ..., x_n$ so that $\Psi(x)=1$?
- Could use a box solving SAT to solve any problem in NP



Beyond NP

Tautology

•Input: $\Psi:\{0,1\}^n \to \{0,1\}$

• $\forall x \Psi(x)=1$?

Complete for coNP

•QSAT_k

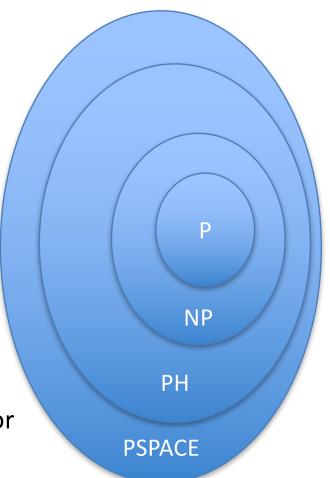
Generalizes SAT and Tautology

•Input: $\Psi:\{0,1\}^n \rightarrow \{0,1\}$ & partitioning $S_1, S_2, ..., S_k \subseteq [n]$

• Problem: $\exists x_{S1} \forall x_{S2},...,Q_k x_{Sk}$ so that $\Psi(x)=1$?

 Thought to be strictly harder with larger k's (or else there is a collapse)

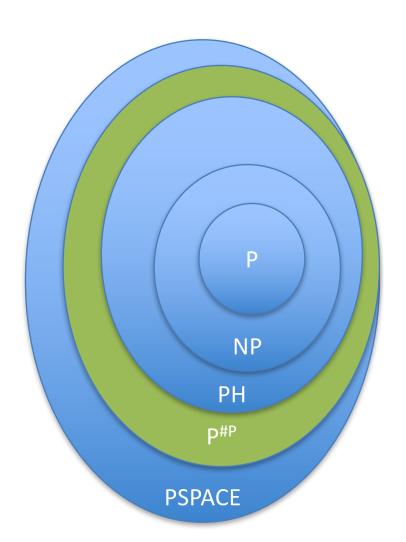
- Σ_k is class of problems solvable with a $QSAT_k$ box
- PH is class of problems solvable with a QSAT_{O(1)} box
- PSPACE is class of problems solvable with a QSAT_n box



Complexity of Counting

#SAT

- Input: Ψ: $\{0,1\}^n \rightarrow \{0,1\}$
- Problem: How many satisfying assignments to Ψ?
- #SAT is complete for #P
- PH⊆P^{#P} [Toda'91]
- Permanent $[X] = \sum_{\sigma \in S_n} \prod_{i=1} X_{i,\sigma(i)}$ is **#P-hard**



Complexity of *Approximate* Counting

- Given efficiently computable $f:\{0,1\}^n \rightarrow \{0,1\}$ and $y \in \{0,1\}$
 - Want to compute $Pr_{x\sim U}[f(x)=y]$ exactly
 - This is #P-hard
 - Because $Pr_x[f(x)=1]=\{\# x's \text{ so that } f(x)=1\}/2^n=\sum_x f(x)/2^n$
 - This is as hard as counting number of satisfying assignments to formula Ψ
- However, estimating $Pr_{x\sim U}[f(x)=y]$ to within multiplicative error can be done in Σ_3 , the third level of **PH** [Stockmeyer '83]
 - So for input $f:\{0,1\}^n \rightarrow \{0,1\}$ and $\epsilon>0$ can output α :

$$(1 - \epsilon) \sum_{x} f(x) \le \alpha \le (1 + \epsilon) \sum_{x} f(x)$$

in time poly $(n,1/\epsilon)$ with Σ_3 oracle

- But, situation is very different for $g:\{0,1\}^n \rightarrow \{+1,-1\}$
 - Computing $\Sigma_x g(x)$ exactly is still **#P**-hard
 - Estimating $\Sigma_x g(x)$ to within $(1 \pm \varepsilon)$ multiplicative error is #P-hard!
 - Binary search & Padding
 - Can generalize this hardness:
 - Estimating $(\Sigma_x g(x))^2$ to within $(1 \pm \epsilon)$ multiplicative error is **#P**-hard
 - Why is this so much harder than the {0,1}-valued case?
 - Cancellations

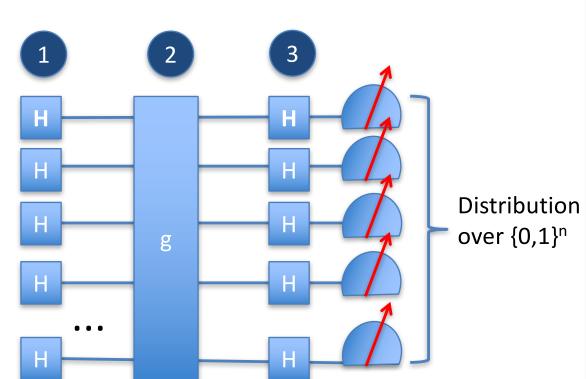
Today

- Want to show that quantum computers are capable of sampling from distributions that cannot be sampled by randomized classical algorithms
- Two constructions of hard distributions
 - 1. "Exact" construction
 - No classical algorithm can sample from exactly the same distribution as the quantum algorithm
 - 2. "Approximate" construction
 - Goal: Show no classical algorithm can sample from any distribution even close (in total variation distance) to quantum distribution
 - Why do we want to do this?
 - "To model error"
 - [Aaronson '11] has shown that such a result would imply a "function problem" complexity separation (i.e., fBQP⊄ fBPP)...
 - Upshot: We'll reach many of the same conclusions of the BosonSampling [AA'10] proposal with a (conceptually) much simpler setup. Our proposal also weakens the hardness conjectures needed by [AA'10], but as of yet does not resolve them....

II. "Exact" Construction [implicit in *Aaronson '11*]

Quantumly sampleable distribution

- Recall: For efficiently computable function g: $\{0,1\}^n \rightarrow \{\pm 1\}$, giving a $(1\pm \epsilon)$ mult error estimate to $(\sum_x g(x))^2$ is **#P**-hard
- Consider the following quantum circuit:



$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} g(x)|x\rangle$$

$$\frac{1}{2^n} \sum_{y \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} -1^{\langle x,y \rangle} g(x)|y\rangle$$
3

Key point: The probability of seeing 00...0 is $(\sum_x g(x))^2/2^{2n}$

Exact classical sampler collapses PH

 Suppose C is a randomized algorithm that samples the outcome distribution so by definition:

$$\Pr_{r \sim U_{p(n)}}[C(r) = y] = \frac{1}{2^{2n}} \left(\sum_{x \in \{0,1\}^n} -1^{\langle x,y \rangle} g(x) \right)^2$$

- Note that $\mathbf{p}=\Pr_r[C(r)=00...0]=(\sum_x g(x))^2/2^{2n}$ encodes a **#P**-hard quantity
- Use Stockmeyer's algorithm to find a (1±ε) multiplicative error estimate to p
- Puts P^{#P}⊆ Σ₃ (but Toda tells us that PH⊆ P^{#P})
- PH⊆ Σ₃ (collapse!!)

How robust is this prior construction?

- Not very!!
 - Hardness based on a single exp. small probability
 - Definition: For distribution X over {0,1}ⁿ:

Given as input ε >0, suppose a classical randomized algorithm samples from any distribution Y, with $|X-Y|_1 < \varepsilon$, in time poly $(n,1/\varepsilon)$

Call such a classical algorithm an "Approximate Sampler" for X

- Our goal: Find a quantumly sampleable X, where the existence of a classical "Approximate Sampler" would cause PH collapse.
- Prior construction doesn't work! (Adversary just "erases" probability we care about)

III. "Approximate" Construction using Quantum Fourier Sampling [F., Umans '15]

Construction of distribution D_{PER}

- Define an efficiently computable function h:[n!]→{0,1}^{n^2}
 - Takes a permutation in S_n to its trivial encoding as an n x n permutation matrix
 - Can be computed efficiently using e.g., Lehmer codes
 - Note h is 1-to-1 and h⁻¹ also efficiently computable
- Quantum sampler:
 - Two steps:
 - 1. Prepare uniform superposition over n x n permutation matrices
 - Prepare uniform superposition over S_n
 - Apply h, followed by h-1
 - 2. Hit with Hadamard on each of n² qubits
- Measure in standard basis

$$\frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} |\sigma\rangle |00...0\rangle$$

$$\frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} |\sigma\rangle |h(\sigma)\rangle$$

$$\frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} |\sigma \oplus h^{-1}(h(\sigma))\rangle |h(\sigma)\rangle$$

$$\frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} |h(\sigma)\rangle$$
2

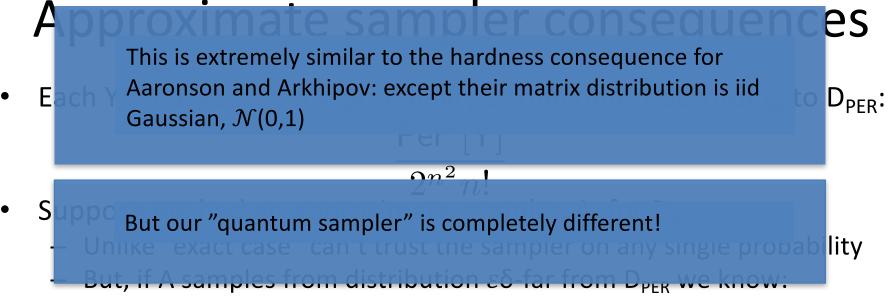
This is the permanent of $\{\pm 1\}^{n \times n}$ matrix encoded by the string w

What's happening?

- Recall, Permanent(x₁,x₂,...,x_{n^2}) is a multilinear polynomial of degree n
- Our quantum sampling algorithm (omitting normalization):

All possible multilinear monomials over n^2 variables $M_1,...M_{2^{n}}$ $M_1(X_1),M_2(X_1),...,M_{2^{n}}$ $M_2(X_1),...,M_{2^{n}}$ $M_2(X_1)$ $M_1(X_1),M_2(X_1),...,M_{2^{n}}$ $M_2(X_1)$ $M_2(X_1)$ $M_2(X_1)$ $M_2(X_1)$ $M_2(X_1)$ $M_2(X_2,...,X_{2^{n}})$ $M_1(X_2,X_1)$ $M_2(X_2,X_1)$ $M_$

HeilbThis/distsupportediont the monomials in the Permanent
Meeting, Cambridge University



- "Most probabilities in A's distribution must be close to probabilities in D_{PFR}"
- At least $(1-\delta)$ -fraction of probabilities must be within $\varepsilon/2^{n/2}$ of true probability
- Strategy: Choose a $Z = \{-1,+1\}^{n^2}$ matrix with iid uniformly distributed entries and approximate its probability using Stockmeyer's algorithm
- We'd obtain solution that "solves $Per^2(X)$ " in Σ_3 with two major caveats:
 - Only "works" with probability $1-\delta$ over choice of matrix
 - "Works" means approximating within additive error $\pm \varepsilon n!$
 - Our question: How hard is this?
 - If it's #P-hard, by Toda's theorem, an approximate sampler for D_{PFR} would imply a PH collapse (as in the exact case)

 Heilbronn/QALGO Quantum Algorithms

Relating Additive to Multiplicative error

- Our procedure computes:
 - Per²[X] $\pm \epsilon$ n! with probability 1- δ in Σ_3 -time poly(n,1/ ϵ ,1/ δ) time
- This is unnatural! Would like multiplicative error:
 - $(1-\epsilon)\text{Per}^2[X] \le \alpha \le (1+\epsilon)\text{Per}^2[X]$ with probability $1-\delta$ in Σ_3 -time poly $(n,1/\epsilon,1/\delta)$ time
- Can we get multiplicative error using our procedure?
 - "Permanent Anti-concentration conjecture" [AA'11]
 - Need: exists polynomial p so that for all n and δ
 - $Pr_X[|Per(X)| < \sqrt{(n!)/p(n,1/\delta)}] < \delta$
 - This may actually be true!!
 - For Bernoulli distributed {-1,+1}^{n x n} matrices:
 - $\forall \epsilon > 0 \Pr_{X}[|Per[X]|^{2} < n!/n^{\epsilon n}] < 1/n^{0.1}[Tao & Vu '08]$

How hard is "Approximating" the Permanent?

- Scenario 1:
 - Suppose I had a box that:
 - "Solves all the Permanents approximately"
 - Input: ϵ >0 and matrix $X \subseteq \{-1,+1\}^{n \times n}$
 - Output: α so that:

$$(1-\epsilon) \mathrm{Per}^2(\mathsf{X}) \leq \alpha \leq (1+\epsilon) \mathrm{Per}^2(\mathsf{X})$$
 • In time poly(n,1/\epsilon)

- This is #P-hard!
 - Proof: "Padding and binary search!"
- Scenario 2:
 - Suppose I had a box that:
 - * "Solves most of the Permanents exactly" $\Pr_X[\alpha = \operatorname{Per}^2[\mathbf{X}]] > 1 \delta$
 - For $\delta=1/\text{poly(n)}$
 - This is #P-hard!
 - Proof idea: Polynomial interpolation [Lipton '89 in finite field case...]!
- Our "solution" has weakness of both Scenario 1 and 2
 - Hardness proofs break-down!
 - This is exactly the same reason other two "approximate" sampling results need conjectures... Heilbronn/QALGO Quantum Algorithms

Meeting, Cambridge University

Generalizations

- Entries of Matrix
 - Replace Quantum Fourier Transform over $Z_2^{n^2}$ with Quantum Fourier Transform over $Z_k^{n^2}$
 - Resulting amplitudes proportional to Permanents of matrices with entries of evenly-spaced points around unit circle
- Generalizing the distribution over matrices
 - Can recapture the Gaussian distributed entries of [AA'11]...
- "Hard Polynomial"
 - Generalize Permanent to any Efficiently Specifiable polynomial sampling
 - Multilinear, homogenous polynomials with m monomials of the form:

$$Q(X_1, X_2..., X_n) = \sum_{y \in [m]} X_1^{h(y)_1} X_2^{h(y)_2} ... X_n^{h(y)_n}$$

- Where h is efficiently computable map (and h^{-1} is also)
- Examples:
 - Permanent, Hamiltonian Cycle polynomial, many more...

Relation to other work

- There are lots of "exact" sampling results
 - Starting with [DiVincenzo-Terhal'02] and [Bremner-Jozsa-Shepherd'10]
 - These distributions can often be sampled by restrictive classes of quantum samplers
 - Constant depth quantum circuits [DT'02]
 - Quantum computations with commuting gates [BJS'10]
 - One clean qubit [Morimae et. al. 2014]
 - Etc...
- "Approximate" sampling is far less understood...
 - "Boson Sampling" [Aaronson and Arkhipov '11]
 - "IQP Sampling" [Bremner, Montanaro and Shepherd'15]
 - Quantum Fourier Sampling [F.,Umans '15]
- All rely on similar non-standard hardness assumptions
 - Need to conjecture that computing "average-case approximate" solution to some polynomial is hard for the PH
 - Permanent [AA'11]
 - The partition function of a random instance of an Ising model [BMS'15]
 - Any Efficiently Specifiable polynomial [F., Umans '15]

Thanks!