The Power of Quantum Fourier Sampling

Bill Fefferman
QuICS, University of Maryland/NIST
Joint work with Chris Umans (Caltech)

Based on arxiv:1507.05592
I. Complexity Theory Basics
Classical Complexity Theory

- **P**
 - Class of problems efficiently solved on classical computer

- **NP**
 - Class of problems with efficiently checkable solutions
 - Characterized by SAT
 - Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$
 - n-variable 3-CNF formula
 » E.g., $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_6) \land \ldots$
 - Problem: $\exists x_1, x_2, \ldots, x_n$ so that $\Psi(x)=1$?
 - Could use a box solving SAT to solve any problem in NP
Beyond **NP**

- **Tautology**
 - Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$
 - $\forall x \; \Psi(x) = 1$?
 - Complete for **coNP**

- **QSAT_k**
 - Generalizes **SAT** and **Tautology**
 - Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$ & partitioning $S_1, S_2, \ldots, S_k \subseteq [n]$
 - Problem: $\exists x_{S_1} \forall x_{S_2}, \ldots, Q_k x_{S_k}$ so that $\Psi(x) = 1$?
 - Thought to be strictly harder with larger k's (or else there is a collapse)

- Σ_k is class of problems solvable with a QSAT_k box
- **PH** is class of problems solvable with a $\text{QSAT}_{O(1)}$ box
- **PSPACE** is class of problems solvable with a QSAT_n box
Complexity of Counting

- **#SAT**
 - Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$
 - Problem: How many satisfying assignments to Ψ?
- **#SAT** is complete for **#P**
- **PH \subseteq P** [Toda’91]
- Permanent:$[X] = \sum_{\sigma \in S_n} \prod_{i=1}^{n} X_{i,\sigma(i)}$ is **#P**-hard
Complexity of *Approximate* Counting

- Given efficiently computable \(f: \{0,1\}^n \rightarrow \{0,1\} \) and \(y \in \{0,1\} \)
 - Want to compute \(\Pr_{x \sim U}[f(x)=y] \) exactly
 - This is \#P-hard
 - Because \(\Pr_x[f(x)=1] = \# x \text{’s so that } f(x)=1)/2^n = \sum_x f(x)/2^n \)
 - This is as hard as counting number of satisfying assignments to formula \(\Psi \)
- However, *estimating* \(\Pr_{x \sim U}[f(x)=y] \) to within multiplicative error can be done in \(\Sigma_3 \), the third level of \(\text{PH} \) [Stockmeyer ’83]
 - So for input \(f: \{0,1\}^n \rightarrow \{0,1\} \) and \(\varepsilon>0 \) can output \(\alpha: \)
 \[
 (1 - \varepsilon) \sum_x f(x) \leq \alpha \leq (1 + \varepsilon) \sum_x f(x)
 \]
 in time \(\text{poly}(n,1/\varepsilon) \) with \(\Sigma_3 \) oracle
- But, situation is very different for \(g: \{0,1\}^n \rightarrow \{+1,-1\} \)
 - Computing \(\Sigma_x g(x) \) exactly is still \#P-hard
 - Estimating \(\Sigma_x g(x) \) to within \((1 \pm \varepsilon)\) *multiplicative* error is \#P-hard!
 - Binary search & Padding
 - Can generalize this hardness:
 - Estimating \((\Sigma_x g(x))^2\) to within \((1 \pm \varepsilon)\) *multiplicative* error is \#P-hard
 - Why is this so much harder than the \{0,1\}-valued case?
 - Cancellations
Today

• Want to show that quantum computers are capable of sampling from distributions that cannot be sampled by randomized classical algorithms
• Two constructions of hard distributions
 1. “Exact” construction
 • No classical algorithm can sample from exactly the same distribution as the quantum algorithm
 2. “Approximate” construction
 • Goal: Show no classical algorithm can sample from any distribution even close (in total variation distance) to quantum distribution
 • Why do we want to do this?
 – “To model error”
 – [Aaronson ‘11] has shown that such a result would imply a “function problem” complexity separation (i.e., $\text{fBQP} \not\subset \text{fBPP}$)...

 – Upshot: We’ll reach many of the same conclusions of the BosonSampling [AA’10] proposal with a (conceptually) much simpler setup. Our proposal also weakens the hardness conjectures needed by [AA’10], but as of yet does not resolve them....
II. “Exact” Construction [implicit in Aaronson ‘11]
Quantumly sampleable distribution

• **Recall:** For efficiently computable function $g : \{0,1\}^n \rightarrow \{\pm 1\}$, giving a $(1 \pm \varepsilon)$ mult error estimate to $(\sum g(x))^2$ is $\mathbf{#P}$-hard

• Consider the following quantum circuit:

 $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$

 $\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} g(x) |x\rangle$

 $\frac{1}{2^n} \sum_{y \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} -1^{(x,y)} g(x) |y\rangle$

Key point: The probability of seeing 00...0 is $(\sum g(x))^2 / 2^{2n}$

Heilbronn/QALGO Quantum Algorithms Meeting, Cambridge University
Exact classical sampler collapses PH

• Suppose C is a randomized algorithm that samples the outcome distribution so by definition:

$$\Pr_{r \sim U_{p(n)}}[C(r) = y] = \frac{1}{2^{2n}} \left(\sum_{x \in \{0,1\}^n} -1^{\langle x,y \rangle} g(x) \right)^2$$

• Note that $p = \Pr_r[C(r)=00...0] = (\sum_x g(x))^2/2^{2n}$ encodes a #P-hard quantity

• Use Stockmeyer’s algorithm to find a $(1 \pm \varepsilon)$ multiplicative error estimate to p

• Puts $\text{P}^\text{#P} \subseteq \Sigma_3$ (but Toda tells us that $\text{PH} \subseteq \text{P}^\text{#P}$)

• $\text{PH} \subseteq \Sigma_3$ (collapse!!)
How *robust* is this prior construction?

• Not very!!
 – Hardness based on a single exp. small probability
 – *Definition*: For distribution X over $\{0,1\}^n$:

 Given as input $\varepsilon>0$, suppose a classical randomized algorithm samples from any distribution Y, with $|X-Y|_1<\varepsilon$, in time $\text{poly}(n,1/\varepsilon)$

 Call such a classical algorithm an “Approximate Sampler” for X

• **Our goal**: Find a quantumly sampleable X, where the existence of a classical “Approximate Sampler” would cause **PH** collapse.

• Prior construction doesn’t work! (Adversary just ”erases” probability we care about)
III. “Approximate” Construction using Quantum Fourier Sampling [F., Umans ‘15]
Construction of distribution D_{PER}

- Define an efficiently computable function $h:[n!]\rightarrow\{0,1\}^{n^2}$
 - Takes a permutation in S_n to its trivial encoding as an $n \times n$ permutation matrix
 - Can be computed efficiently using e.g., Lehmer codes
 - Note h is 1-to-1 and h^{-1} also efficiently computable

- Quantum sampler:
 - Two steps:
 1. Prepare uniform superposition over $n \times n$ permutation matrices
 - Prepare uniform superposition over S_n
 - Apply h, followed by h^{-1}
 2. Hit with Hadamard on each of n^2 qubits
 - Measure in standard basis

\[
\frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} |\sigma\rangle |00\ldots0\rangle \\
\frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} |\sigma\rangle |h(\sigma)\rangle \\
\frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} |\sigma \oplus h^{-1}(h(\sigma))\rangle |h(\sigma)\rangle \\
\frac{1}{\sqrt{n!}} \sum_{\sigma \in S_n} |h(\sigma)\rangle \\
\frac{1}{\sqrt{n!2^{n^2}}} \sum_{w \in \{0,1\}^{n^2}} \sum_{\sigma \in S_n} (-1)^{\langle w, h(\sigma) \rangle} |w\rangle
\]

This is the permanent of $\{\pm 1\}^{n \times n}$ matrix encoded by the string w
What’s happening?

- Recall, \textbf{Permanent}(x_1, x_2, \ldots, x_{n^2}) is a multilinear polynomial of degree n.
- Our quantum sampling algorithm (\textit{omitting normalization}):

 All possible multilinear monomials over \(n^2\) variables \(M_1, \ldots, M_{2^{n^2}}\)

\[
\begin{pmatrix}
1 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
\Per[X_1] \\
\Per[X_2] \\
\vdots \\
\Per[X_{2^{n^2}}]
\end{pmatrix}
\]

This is supported on the monomials in the \textbf{Permanent}.
Approximate sampler consequences

- Each $Y \in \{-1,+1\}^n \times \{1\}$, the probability of outcome Y according to D_{PER}:

 - Suppose we had an approximate sampler, A, for D_{PER}—Unlike "exact case" can't trust the sampler on any single probability
 - But, if A samples from distribution $\epsilon \delta$-far from D_{PER} we know:
 - "Most probabilities in A's distribution must be close to probabilities in $D_{\text{PER}}"$
 - At least $(1-\delta)$-fraction of probabilities must be within $\epsilon/2^{n^2}$ of true probability
 - **Strategy**: Choose a $Z \in \{-1,+1\}^{n^2}$ matrix with iid uniformly distributed entries and approximate its probability using Stockmeyer’s algorithm

- We’d obtain solution that “solves Per$^2(X)$” in Σ_3 with two major caveats:
 - Only “works” with probability $1-\delta$ over choice of matrix
 - “Works” means approximating within additive error $\pm \epsilon n$!

- **Our question**: How hard is this?
 - If it’s $\#P$-hard, by Toda’s theorem, an approximate sampler for D_{PER} would imply a PH collapse (as in the exact case)
Relating Additive to Multiplicative error

• Our procedure computes:
 • \(\text{Per}^2[X] \pm \varepsilon n! \) with probability \(1 - \delta \) in \(\Sigma_3 \)-time \(\text{poly}(n, 1/\varepsilon, 1/\delta) \) time

• This is unnatural! Would like multiplicative error:
 • \((1 - \varepsilon)\text{Per}^2[X] \leq \alpha \leq (1 + \varepsilon)\text{Per}^2[X] \) with probability \(1 - \delta \) in \(\Sigma_3 \)-time \(\text{poly}(n, 1/\varepsilon, 1/\delta) \) time

• Can we get multiplicative error using our procedure?
 • “Permanent Anti-concentration conjecture” [AA’11]
 • Need: exists polynomial \(p \) so that for all \(n \) and \(\delta \)
 – \(\Pr[X]|\text{Per}(X)| < \sqrt{(n!)/p(n, 1/\delta)} < \delta \)
 • This may actually be true!!
 • For Bernoulli distributed \(\{-1, +1\}^{n \times n} \) matrices:
 • \(\forall \varepsilon > 0 \Pr[X]|\text{Per}[X]|^2 < n!/n^{en} < 1/n^{0.1} \) [Tao &Vu ’08]
How hard is “Approximating” the Permanent?

• **Scenario 1:**
 – Suppose I had a box that:
 • “Solves all the Permanents approximately”
 • Input: \(\epsilon > 0 \) and matrix \(X \in \{-1,+1\}^{n \times n} \)
 • Output: \(\alpha \) so that:
 \[
 (1 - \epsilon) \text{Per}^2(X) \leq \alpha \leq (1 + \epsilon) \text{Per}^2(X)
 \]
 • In time \(\text{poly}(n,1/\epsilon) \)
 – This is \#P-hard!
 • Proof: “Padding and binary search!”

• **Scenario 2:**
 – Suppose I had a box that:
 • “Solves most of the Permanents exactly”
 \[
 \Pr_X[\alpha = \text{Per}^2[X]] > 1 - \delta
 \]
 • For \(\delta = 1/\text{poly}(n) \)
 – This is \#P-hard!
 • Proof idea: Polynomial interpolation [Lipton ‘89 in finite field case...!]

• Our ”solution” has weakness of both Scenario 1 and 2
 – Hardness proofs break-down!
 – This is exactly the same reason other two “approximate” sampling results need conjectures...
Generalizations

• Entries of Matrix
 – Replace Quantum Fourier Transform over $\mathbb{Z}_2^{n^2}$ with Quantum Fourier Transform over $\mathbb{Z}_k^{n^2}$
 • Resulting amplitudes proportional to Permanents of matrices with entries of evenly-spaced points around unit circle

• Generalizing the distribution over matrices
 – Can recapture the Gaussian distributed entries of [AA’11]...

• “Hard Polynomial”
 – Generalize Permanent to any Efficiently Specifiable polynomial sampling
 • Multilinear, homogenous polynomials with m monomials of the form:
 $$Q(X_1, X_2, \ldots, X_n) = \sum_{y \in [m]} X_1^{h(y)_1} X_2^{h(y)_2} \ldots X_n^{h(y)_n}$$
 • Where h is efficiently computable map (and h^{-1} is also)

 – Examples:
 • Permanent, Hamiltonian Cycle polynomial, many more...

Heilbronn/QALGO Quantum Algorithms
Meeting, Cambridge University
Relation to other work

• There are lots of “exact” sampling results
 – Starting with [DiVincenzo-Terhal’02] and [Bremner-Jozsa-Shepherd’10]
 – These distributions can often be sampled by restrictive classes of quantum samplers
 • Constant depth quantum circuits [DT’02]
 • Quantum computations with commuting gates [BJS’10]
 • One clean qubit [Morimae et. al. 2014]
 • Etc...

• “Approximate” sampling is far less understood...
 – “Boson Sampling” [Aaronson and Arkhipov ’11]
 – “IQP Sampling” [Bremner, Montanaro and Shepherd’15]
 – Quantum Fourier Sampling [F.,Umans ’15]

• All rely on similar non-standard hardness assumptions
 – Need to conjecture that computing “average-case approximate” solution to some polynomial is hard for the PH
 • Permanent [AA’11]
 • The partition function of a random instance of an Ising model [BMS’15]
 • Any Efficiently Specifiable polynomial [F., Umans ‘15]
Thanks!