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1. Basics



Quantum space complexity

* Main result: Give two problems “characterize” unitary quantum space complexity
* Roughly: What problems can we solve by qguantum computation with a bounded number of qubits?
* For all space bounds log(n)<k(n)<poly(n) we find a BQSPACE[k(n)]-complete problem
* Our reductions will use classical poly(n) time and O(k(n))-space

* What is classical k(n)-space/memory?
* |nputis on its own “read-only” tape, doesn’t use space
* Each bit of the output can be computed in O(k(n))-space
* k(n)-Precise Succinct Hamiltonian and k(n)-Well-Conditioned Matrix Inversion

* BQSPACE[k(n)] is the class of promise problems L=(L,L,,) solvable with a bounded error
guantum algorithm acting on O(k(n)) qubits:
* Exists uniformly generated family of quantum circuits {Q,}, 1)+ €ach acting on O(k(|x[)) qubits:
* “If answer is yes, the CIrCUIt Q, accepts W|th high probability”
S Lyes = < ‘Q |1><1‘0thm|O > > 2/3
* “If answer is no, the C|rcu|t Q, accepts W|th low probability”

T € Lpo = (0 ’Qx|1><1|OUtQ$|O ) <1/3

* *Uniformly generated means poly-time, O(k)-space




Known (and unknown) in space complexity

Any k>log(n), NSPACE[k(n)] < DSPACE[k(n)?] [Savitch ‘70]
* Via algorithm for directed graph connectivity, with n vertices in log?(n) space
* (Obvious) Corollary 1: NPSPACE=PSPACE
* (Obvious) Corollary 2: NL=NSPACE[log(n)] < DSPACE[log?(n)]

Undirected Graph Connectivity with n vertices is complete for DSPACE[log(n)]=L [Reingold '05]
BQSPACE[k(n)]< DSPACE[k(n)?] [Watrous’99]
* In particular, BQPSPACE=PSPACE

\[/Vell-conitioned Matrix inversion in non-unitary quantum space log(n) [Ta-Shma’14] building on
HHL'08

What is the power of intermediate measurements in quantum logspace?
* Note that “deferring” measurements in the standard sense is not space efficient

* i.e., a quantum logspace algorithm could make as many as poly(n) measurements
* Deferring the measurements requires poly(n) ancilla qubits



Quantum Merlin-Arthur

* Problems whose solutions can be verified quantumly given a
guantum state as witness

( ( ), k(n)) bounded QMA,, (a,b) is the class of promise problems
L=(Lyes,Lno) SO that:

r € Lyes = 3|¢) Pr[V(z,|yp)) =1] > a
x € Ly, = V) Pr[Vi(x,|v) =1] <b

* Where V runs in quantum time t(n), and quantum space k(n)
* And the witness, |W> is an m qubit state

. QMA—(pon,Fon) -bounded QMA,,,,(2/3,1/3)=(poly,poly)-bounded
c>OQMApon C,C- 1/p0 y)

* preciseQMA=(poly,poly)-bounded U_,QMA,,, (c,c-1/exp)

* k-Local Hamiltonian problem is QMA-complete (when k>2)[Kitaev '02]
* Input: H = Y11, H;, each term H, is k-local
* Promise, for (a,b) so that b-a>1/poly(n), either:
« d|P) so that (Y|H|P) < a
e V|Y)so that (Y[H|P) =b 5




2. Characterization 1: k(n)-Precise Succinct
Hamiltonian problem



Definitions and proof overview

* Definition: Succinct encoding
* Let A be a 24" x 2K matrix.
* We say a classical Turing Machine M is a succinct encoding for matrix A if:
¢ Oninputi€{0,1}", M outputs non-zero elements in i-th row of A
* In poly(n) time and k(n) space
* k(n)-Precise Succinct Hamiltonian Problem

* Input: Size n succinct encoding of 24" x 2k PSD matrix A so that:

* |H|=maxs(A(s,t)) is constant

* Promised minimum eigenvalue is either greater than b or less than a, where b-a>2-0(k(n))
* Which is the case?

* Proof Sketch of BQSPACE[k(n)]-completeness (details in next slides)
* Upper bound: k(n)-P.S Hamiltonian Problem & BQSPACE[k(n)]
1.  k(n)-P.S Hamiltonian Problem € (poly,k(n))-bounded QMA(c,c-2")
* preciseQMA with k(n)-space bounded verifier
2. (poly,k(n))-bounded QMA(c,c-2"4") € BQSPACE[k(n)]
* Lower bound: BQSPACE[k(n)]-hardness
* Application of Kitaev’s clock-construction



Upper bound (1/4): k(n)-PS Ham. & (poly,k(n))-
bounded QMAk(n)(c,c_z-k(n))

* Recall: k(n)-Precise Succinct Hamiltonian problem
* Given succinct encoding of 2™ x 2" matrix A, is A, = b or < a where b-a=2°kn)?

* Ask Merlin to send eigenstate ¢> with minimum eigenvalue
 Arthur runs the “poor man’s phase estimation” circuit on e™* and ‘w

%) %)

* Measure ancilla and accept iff “0”

* *First assume e can be implemented exactly*
* Easy to see that we get “0” outcome with probability that’s slightly (2°) higher if A, < a than if A, > b
* But this is exactly what’s needed to establish the claimed bound!

* Can use high-precision sparse Hamiltonian simulation of [Childs et. al.’14] to implement e7At to
within precision € in time and space that scales with log(1/¢)

¢ We'll need to implement up to precision g=2")
* This circuit uses poly(n) time and O(k(n)) space




Upper bound (2/4): QMA amplification

* We have shown that k(n)-Precise Succinct Hamiltonian is in k(n)-space-bounded preciseQMA
* Next step: apply space-efficient “in-place” QMA amplification to our preciseQMA protocol

* How do we error amplify QMA?
1. “Repetition” [Kitaev '99]

Ask Merlin to send many copies of the original witness and run protocol on each one, take majority vote
Problem with this: number of proof qubits grows with improving error bounds
Needs r/(c-s)? repetitions to obtain error 2-* by Chernoff bound

2.  “In-place” [Marriott and Watrous ‘04]
« Define two projectors: LIg = |0> <0|anc and II; = VT|1><1‘outV

Notice that the max. acceptance probability of the verifier is maximal eigenvalue ofH0H1HO
Procedure

* Initialize a state consisting of Merlin’s witness and blank ancilla

+ Alternatingly measure {H(), 1 — HO} and{l_[l7 1 — Hl} many times

Use p)ost processing to analyze results of measurements (rejecting if two consecutive measurement outcomes differ too many
times

Analysis relies on “Jordan’s lemma”

* Given two projectors, there’s an orthogonal decomposition of the Hilbert space into 1 and 2-dimensional subspaces invariant
under projectors

* Basically allows verifier to repeat each measurement without “losing” Merlin’s witness
* Because application of these projectors “stays” inside 2D subspaces
As a result, we can attain the same type of error reduction as in repetition, without needing additional witness qubits



* We’re not happy with Marriott-Watrous amplification!!
"MW bounded QMA,, (¢, s) C (k+ —— ) — bounded QMA,,(1 — 277,277
C

—g)2
* The space grows because we need to keep track of gach measurement outcome
* For our application we really want to be able to space-efficiently amplify protocol with
inverse exponentially small (in k) gap
* Recall: our parameters: log(n)<k<poly(n), c-s=1/2% and r=k
* Then using MW the space complexity in amplified protocol is far larger than k

* We are able to improve this! .
k —bounded QMA,, (¢, s) C (k+1log ——) —bounded QMA,,(1 —27",27")
cC— S

* Now the same setting of parameters preserves O(k) space complexity!

* Proof idea:
* Define reflections Ry = 2Ilg — I, Ry = 2II; — I
* Using Jordan’s lemma:
* Within 2D subspaces, the product RyR; is a rotation by an angle related to acceptance probability of verifier V,

* Use phase estimation on RgR; with Merlin’s state and ancillias set to 0
* Key point: Phase estimation to precision j with failure probability a uses O(/og(1/ja)) ancilla qubits
* “Succeed” if the phase is larger than fixed threshold, reject otherwise
* Repeat this many times and use classical post-processing on the outcomes to determine acceptance

* Related to older result of [NWZ’11] but improves on space complexity




Upper bound (4/4): (poly k(n))-bounded
QMA, \(c,c-24") & BQSPACE[k(n)]

e Recall: (t, k)-bounded QMA,(c,s) C (O ( tr ),C’) (k + log (C—:S>>)—b0unded QMA, (1 —27",27")

cC—S

* Applying this amplification result:

* (poly,k(n))-bounded QMA,(c,c-2 M) (20K k(n))-bounded QMA, (1-20(k) 2-0(k))
 Removing the witness! [Marriott and Watrous ‘04]

e Thm. RHS S QSPACE[O(k)](3/4(2°W)),1/4(2-0k))

* Pf. Idea: Consider the same verification procedure that uses randomly chosen basis state
for a witness

e But now we can use our amplification result again (with m=0)!
* RHS © BQSPACE[O(k)]



Lower bound: k(n)-Precise Succinct
Hamiltonian is BQSPACE[k(n)]-hard

An easy corollary of our “space-efficient” amplification together with Kitaev’s clock
construction

Let L=(L,es,Lno) be any problem in BQSPACE[k(n)]
By definition L is decided by uniform family of bounded error quantum circuits using k(n)

space
 wlog circuit is of size at most 2k

Space-efficiently amplify this circuit (without changing the size or space too much)

Kitaev shows how to take this circuit and produce a Hamiltonian with the property that:

* In the “yes case”, the Hamiltonian’s minimum eigenvalue is less than some quantity involving the
completeness and the circuit size

* In the “no case”, the Hamiltonian’s minimum eigenvalue is at least some quantity involving the
soundness and the circuit size

By amplifying the completeness and soundness of the circuit we can ensure that the
promise gap of the Hamiltonian is at least 2°«

Easy to show that this Hamiltonian is succinctly encoded
* Follows from sparsity of Kitaev’s construction and uniformity of circuit



Application 1: preciseQMA=PSPACE

* Question: How does the power of QMA scale with the completeness-
soundness gap?

* Recall: preciseQMA=U_,,QMA (c,c-2PoVn)
* Upper bound: preciseQMA< BQPSPACE=PSPACE

* Prior slides showed something stronger!

* Lower bound: PSPACE< preciseQMA

* We just showed k(n)-Precise Succinct Hamiltonian Problem is BQSPACE[k(n)]-hard

* Since BQPSPACE=PSPACE [Watrous’03] we have poly(n)-Precise Succinct
Hamiltonian Problem is PSPACE-hard



Application 1: preciseQMA=PSPACE

* Could QMA=preciseQMA=PSPACE?

* Unlikely since QMA=preciseQMA — PSPACE=PP
* Using QMA < PP

* What is the classical analogue of preciseQMA?
* Certainly NPPP C PPPP C PSPACE
* PPPP=PSPACE =CH collapse!

e Corollary: “precise k-Local Hamiltonian problem” is PSPACE-complete

* Extension: “Perfect Completeness”: QMA(1,1-2°°v(n))=pSPACE

e Corollary: checking if a local Hamiltonian has zero ground state energy is
PSPACE-complete



Application 2:Preparing PEPS vs Local Hamiltonian

* Two boxes:
* O peps: Takes as input classical description of PEPS and outputs the state

* O |ocal Hamiltonian- Takes as input classical description of Local Hamiltonian and outputs the
ground state

* We show a setting in which O |, Hamittonian 1S More powerful than O pgps
* BQPY»s=PostBQP=PP [Schuch et. al’07]

* Can extend proof to show this is also true with unbounded error
* i.e., PQPYrr=PP

) HOW powerful is PQPOLocaI Hamiltonian?
* PSPACE=PreciseQMA & PQPOocal Hamittonian

* SO O\ ocal Hamiltonian 1S More powerful unless PP=PSPACE



3. Characterization 2: k(n)-Well Conditioned
Matrix Inversion



Our results on Matrix Inversion

* Classically, we know that n x n Matrix Inversion is in log?(n) space, but don’t
believe it can be solved in classical log(n) space

* k(n)-Well-conditioned Matrix Inversion
* Input: Efficient encoding of 2k x 2k PSD matrix A, and s,t ={0,1}:
« Upper bound k<2°k) on the condition number so that kK I<A<I
* Promised either |A’(s,t)|=b or < a where a,b are constants between 0 and 1

e Decide which is the case?

e Our result: k(nf Well-conditioned Matrix Inversion is complete for
BQSPACE[k(n)

* Improves on Ta-Shma:
1. No intermediate measurements!
2. We also have hardness!

* Complexity implications:
* |f Matrix inversion can be solved in L then BQL=L (seems unlikely)

* Evidence of quantum space hierarchy theorem?
* k(n)-Well-conditioned Matrix inversion seems strictly harder with larger k
* Seems close to showing if f(n)=o(g(n)) then BQSPACE[g(n)]¢BQSPACE[f(n)]



Thanks!



