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Classical	Complexity	Theory
• P
– Class	of	problems	efficiently	solved	on	classical	
computer	

• NP
– Class	of	problems	with	efficiently	

checkable	solutions
– Characterized	by	SAT

• Input:	Ψ:{0,1}n→{0,1}
– n-variable	boolean formula

» E.g.,	(x1∨x2∨x3)∧(x1∨−x2∨x6)∧...
• Problem:	∃x1,x2,...,xn so	that	Ψ(x)=1?

– SAT is	NP-complete
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Beyond	NP
•Tautology

•Input:	Ψ:{0,1}n→{0,1}
•∀x	Ψ(x)=1?
•Complete	for	coNP
•Don’t	believe	that	coNP=NP

•Generalize	SAT and	Tautology by	adding	quantifiers:	
•QSAT2 is the	version	of	the	SAT problem	with	2	quantifiers
•E.g.,	∃x1x2x3…xn/2∀xn/2+1xn/2+2,...,xn so	that	Ψ(x)=1	?
•Consider	problems	QSAT3,QSAT4,QSAT5...QSATn
•Conjectured	to	get	strictly	harder	with	increasing	number	of	
quantifiers	(or	else	there’s	a	collapse!)

• Σk is	class	of	problems	solvable	with	a	QSATkbox
• PH	is	class	of	problems	solvable	with	a	QSATO(1) box
• PSPACE	is	class	of	problems	solvable	with	a	QSATn box
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Complexity	of	Counting
• #SAT
– Input: Ψ:{0,1}n→{0,1}
– Problem: How many satisfying

assignments to Ψ?
• #SAT is complete for #P
• PH⊆P#P [Toda’91]
• is #P-hard
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How	powerful	are	quantum	
computers?

• BQP:	The	class	of	decision problems	
solvable	by	quantum	computers	in	
polynomial	time

• Certainly	P⊆BQP
• But	why	should	BQP⊄P	(or	NP or PH)?
– Shor’s	algorithm:	Factoring∈BQP

• But	little	reason	to	believe	Factoring	is	not	in	
P

• In	fact,	if	Factoring	is	NP-hard	then	PH
collapses

– Oracle	separations,	see	[e.g.,	
Aaronson’10,	F.,	Umans’11]

– In	short,	not	much	is	known!
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Separations	from	sampling	problems	

• Starting	with	[DT’02][BJS’10]	we	know	that	there	are	
distributions that	can	be	sampled	quantumly that	cannot	be	
sampled	exactly classically	(unless	PH collapse)
– Quantumly:	Efficiently	prepare	a	quantum	state	on	n qubits	and	

measure	in	standard	basis
• Distribution	is	over	measurement	outcomes

– Classically:	No	efficient	classical	randomized	algorithm	can	sample	
from	exactly the	same	distribution

• Our	focus:	“Approximate	sampling”	hardness	result
– Want	a	hardness	result	even	if	the	classical	sampler	samples	from	

distribution	1/poly(n)	close	in	total	variation	distance	from	
quantum	distribution

– Why	are	we	interested	in	this?
• “To	model	experimental	error”
• Other	complexity	separations	would	follow	(i.e.,	fBQP⊄fBPP
[Aaronson’10])
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Construction	of	quantumly sampleable
distribution	DPER

• Goal:	efficiently	prepare	a	quantum	state	in	which	each
amplitude	is	proportional	to	the	Permanent of	a	
different	matrix

• Sketch	of	procedure:	
1. Prepare	the	“permutation	matrix	state”

• Quantum	state	on	n2 qubits	uniformly	supported	only	on	those	
n!	permutation	matrices	

2. Apply	a	quantum	Fourier	transform	𝐻⊗#$

• i.e.,	apply	Hadamard on	each	of	n2 qubits
3. Measure	in	standard	basis	to	sample

• Claim:	Each	amplitude	is	proportional	to	the	
Permanent of	a	different	{±1}n	x	n matrix	
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What’s	happening?

8

• Recall,	Permanent(x1,x2,…,xn^2)	is	a	multilinear
polynomial	of	degree	n

• Our	quantum	sampling	algorithm	(omitting	
normalization):

1
0
0
...
0
1
0
…

All	possible	multilinear	monomials	over	n^2	variables	M1,...M2^{n^2}

Per[X1]
Per[X2]

…

Per[X2^{n^2}]

=

This	is	supported	on	the	monomials	in	the	Permanent		

All	possible	matrices
X1,X2,...,X2^{n^2}∊{±1}n^2

M1(X1),M2(X1),…, M2^{n^2}(X1)

M1(X2^{n^2}),…, M2^{n^2}(X2^{n^2})

H⌦n2



Sketch	of	classical	hardness	proof
• Recall:	DPER is	a	distribution	over	all	{±1}n	x	n matrices	X	with	probabilities	

proportional	to	Permanent2[X]
• Assume	there’s	a	classical	algorithm	that	samples	from	distribution	close	

in	total	variation	distance	to	DPER
• Key	tool:	Stockmeyer’s algorithm

– Input:	Classical	sampler	and	an	outcome
– Output:	A	(1±ε)-multiplicative estimate to	the	probability	of	this	outcome	in	

time	poly(n,1/ε)	with	an	NP oracle
• i.e.,	for	ε=1/poly(n),	this	is	in	BPPNP⊆Σ3

• Our	strategy:	Chose	a	random	{±1}n	x	n matrix	X	and	use	Stockmeyer’s
algorithm	to	estimate	outcome	probability	of	X	≈	Permanent2[X]
– Since	our	sampler	is	approximate,	can’t	trust	it	on	any	single	outcome	

probability
– Markov	inequality:	Most of	the	probabilities	must	be	additively close to	the	

true	probabilities
– So	we	end	with	a	BPPNP algorithm	for	additively estimating	the	Permanent2 of	

mostmatrices
• Is	estimation	task	#P-hard?	If	so	then	P#P⊆BPPNP⊆Σ3		

– But	we	know	that	PH⊆ P#P	by	Toda’s	theorem
– So	PH⊆Σ3 (Collapse!) 9



Relating	Additive	to	Multiplicative	
error

• Main	result:	If	there’s	a	classical approximate	
sampler,	then:
• Can	compute	Per2[X]±𝜖n! with	probability	1-δ over	X
in	poly(n,1/𝜖,1/δ)	time	with	NP oracle

• This	is	unnatural! Would	like	multiplicative	error:
• (1-𝜖)Per2[X]≤α ≤(1+𝜖)Per2[X] with	probability	1-δ in	
poly(n,1/𝜖,1/δ) time	with	NP oracle

• Can	we	get	multiplicative error	using	our	
procedure?
• “Permanent	Anti-concentration	conjecture”	[AA’11]

• Need:	exists	polynomial	p	so	that	for	all	n	and	δ
– PrX[|Per(X)|<√(n!)/p(n,1/δ)]<δ

• Have	evidence	that	this	is	true:
– For	Bernoulli	distributed	{-1,+1}n	x	n matrices:

• ∀ε>0	PrX[|Per[X]|2<n!/nεn]<1/n0.1	[Tao	&	Vu	‘08]
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How	hard	is	“Approximating”	the	
Permanent?

• Scenario 1:
– Suppose	I	had	a	box	that:

• “Solves	all	the	Permanents	approximately”
• Input:	𝜖>0	and	matrix	X∈{-1,+1}n	x	n
• Output:	𝛼 so	that:

• In	time	poly(n,1/𝜖)
– This	is	#P-hard!

• Scenario 2:
– Suppose	I	had	a	box	that:

• “Solves	most	of	the	Permanents	exactly”

• For	δ=1/poly(n)
– This	is	#P-hard!

• Our	”solution”	has	weakness	of	both	Scenario	1	and	2
– Hardness	proofs	break-down!
– This	is	exactly	the	same	reason	other	two	“approximate”	sampling	

results	need	conjectures… 11

(1� ✏)Per2(X)  ↵  (1 + ✏)Per2(X)
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Generalizing	the	argument
• Unlike	the	results	of	[Aaronson	&	Arkhipov ’12]	and	
[Bremner,	Montanaro &	Shepherd	’16]	we	can	
generalize	our	argument	to	rely	on	alternative	
hardness	conjectures
– Can	generalize	the	Permanent to	any	“efficiently	
specifiable	polynomial”
• By	changing	permutation	matrix	state
• For	instance:	Hamiltonian	cycle	polynomial,	others…

– Can	generalize	the	entries	of	the	matrices	and	the	
distribution	over	matrices	(e.g.,	iid Gaussian	instead	of	
random	sign	matrix)

• If	any	of	these	conjectures	are	true,	we	show	the	
desired	“approximate	sampling”	separation
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Thanks!
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