Space-efficient Error Reduction for Unitary Quantum Computations

Bill Fefferman

QuICS, University of Maryland/NIST

Joint with Hirotada Kobayashi, Cedric Yen-Yu Lin, Tomoyuki Morimae, and Harumichi Nishimura

Overview

Basic Definitions
Past work: QMA error amplification
Our results

1. Basic Definitions

Unitary quantum space complexity

- We say that a family of quantum circuits $\{Q_x\}_{x \in \{0,1\}^n}$ acting on k(n) qubits solves a promise problem L=(L_{yes},L_{no}) if:
 - $x \in L_{yes} \Rightarrow \langle 0^k | Q_x^{\dagger} | 1 \rangle \langle 1 |_{out} Q_x | 0^k \rangle \ge 2/3$ $x \in L_{no} \Rightarrow \langle 0^k | Q_x^{\dagger} | 1 \rangle \langle 1 |_{out} Q_x | 0^k \rangle \le 1/3$
- BQTIME[t(n)] is the class of promise problems solvable in quantum time t(n):
 - i.e., by a uniformly generated family of quantum circuits {Q_x}, each composed of O(t(n)) gates
- BQSPACE[k(n)] is the class of promise problems solvable in k(n) quantum space
 - i.e., by a uniformly generated family of quantum circuits $\{Q_x\}$ each acting on O(k(n)) qubits
- Subtleties in defining quantum space bounded computation
 - Power of intermediate measurements?
 - Our focus: unitary case

Quantum Merlin-Arthur

- Problems whose solutions can be verified quantumly given a quantum state as witness
- k(n)-bounded QMA_m(c,s) is the class of promise problems L=(L_{yes},L_{no}) so that there exists a verifier {V_x} acting on O(m(|x|)+k(|x|)) qubits:
 - $x \in L_{yes} \Rightarrow \exists |\psi\rangle \left(\langle \psi| \otimes \langle 0^k| \right) V_x^{\dagger} |1\rangle \langle 1|_{out} V_x \left(|\psi\rangle \otimes |0^k\rangle \right) \ge c$ $x \in L_{no} \Rightarrow \forall |\psi\rangle \left(\langle \psi| \otimes \langle 0^k| \right) V_x^{\dagger} |1\rangle \langle 1|_{out} V_x \left(|\psi\rangle \otimes |0^k\rangle \right) \le s$

• QMA is a central topic of study in quantum complexity theory

- "Quantum NP"
- Many connections to physics (i.e., estimating the ground state energy of a Local Hamiltonian is QMA-complete [Kitaev'02])
- But some of the most natural questions are embarrassingly open
- Our main result is a method for *space-efficient* **QMA** *erroramplification*

2. Past work: **QMA** error amplification

QMA error amplification using repetition

- "Repetition" [Kitaev '02]
 - Ask Merlin to send many copies of the original witness
 - Verifier repeats original protocol on each one, measures and takes majority vote of outcomes
 - Using Chernoff bound, to obtain error 2^{-p}, need O(p/(c-s)²) repetitions
 - Problem with this: number of witness and space qubits grow with improving error bounds
 - i.e., for any given p:

k-bounded
$$\mathsf{QMA}_m(c,s) \subseteq (k \cdot \frac{p}{(c-s)^2})$$
-bounded $\mathsf{QMA}_m \cdot \frac{p}{(c-s)^2}(1-2^{-p},2^{-p})$

"In-place" QMA amplification

- "Amplification without destroying witness" [Marriott and Watrous '04]
 - Define two projectors: $\Pi_0 = |0\rangle \langle 0|_{anc}$ and $\Pi_1 = V_x^\dagger |1\rangle \langle 1|_{out} V_x$
 - Notice the max. acceptance probability of V_x is the maximal eigenvalue of $\Pi_0\Pi_1\Pi_0$
 - Verification procedure:
 - Initialize a state consisting of Merlin's witness tensored with ancilla qubits initialized to all-zero state
 - Alternatingly measure $\{\Pi_0, 1-\Pi_0\}~~\text{and}~\{\Pi_1, 1-\Pi_1\}~~\text{many times}$
 - Use post processing to analyze results of measurements (rejecting if two consecutive measurement outcomes differ too many times)
- Analysis relies on "Jordan's lemma"
 - Given two projectors, Hilbert space decomposes into 1 and 2-dimensional subspaces invariant under projectors
 - Basically allows verifier to repeat each measurement without "losing" Merlin's witness
 - Because application of these projectors "stays" inside 2D subspaces
 - As a result, we can attain the same type of error reduction as in repetition, without needing additional witness qubits
 - However, we need additional space to keep track of measurement outcomes

$$k - \text{bounded } \mathsf{QMA}_m(c,s) \subseteq (k + \frac{p}{(c-s)^2}) - \text{bounded } \mathsf{QMA}_m(1-2^{-p},2^{-p})$$

3. Our results

Our results: Space-efficient **QMA** error amplification

• Nagaj, Wocjan, and Zhang [NWZ'11] improvements on Marriott-Watrous:

k-bounded $\mathsf{QMA}_m(c,s) \subseteq (k+p\log\frac{1}{c-s})$ -bounded $\mathsf{QMA}_m(1-2^{-p},2^{-p})$

- Notice to achieve error 2^{-poly} requires polynomial extra ancilla qubits!
- Main Theorem:

$$k$$
 - bounded $\mathsf{QMA}_m(c,s) \subseteq (k + \log \frac{p}{c-s})$ - bounded $\mathsf{QMA}_m(1-2^{-p},2^{-p})$

- As a consequence, we show the first "strong" error amplification procedure for unitary quantum logspace protocols
- We give three proofs of main theorem using different procedures
 - I'll talk about the simplest one
 - Other two proofs achieve better parameters

Main Theorem (Proof sketch 1/3)

- We'll use the phase estimation algorithm [Kitaev '95]
 - Important ingredient in many quantum algorithms
 - Given quantum circuit for implementing unitary U and eigenvector $|\psi\rangle$ estimates eigenphase θ
 - Up to precision *j* with failure probability α using O(log(1/j α)) ancilla qubits
- Define reflections $R_0 = 2\Pi_0 I, R_1 = 2\Pi_1 I$
 - These are the "Grover" reflections that apply a phase flip if not in the projected subspace
- Using Jordan's lemma:
 - Within 2D subspaces, the product R_0R_1 is a rotation by an angle related to acceptance probability of verifier $V_{\rm x}$
- 1. Use phase estimation on R_0R_1 with Merlin's state and ancillias set to 0, to amplify error to inverse polynomial (related to approach of [NWZ'11])
 - Accept if phase is above a certain threshold, reject otherwise
 - Do this with precision O(c-s) and failure probability $\alpha = 1/(8p)$
 - Completeness is 1-1/(8p), Soundness is 1/(8p)
 - Uses space O(log(p/(c-s)))

Main Theorem (Proof sketch 2/3)

- 1. $V_x^{(1)}$ runs mild phase estimation to achieve completeness 1-1/(8p(n)) and soundness 1/(8p(n))
- 2. Take "AND" of $N_1 = O(p(n))$ iterations of $V_x^{(1)}$
 - Let $V_x^{(2)}$ be the quantum circuit repeats the following N_1 times:
 - Applies $V_x^{(1)}$ and increments a counter if the output state is reject
 - Applies $(V_x^{(1)})^{\dagger}$
 - Accept iff counter is still set to 0
 - Completeness is $1-N_1/8p(n) \ge 1/2$, Soundness is $(1/(8p(n)))^{N_1} \le 2^{-p(n)}$

Main Theorem (Proof sketch 3/3)

- 1. $V_x^{(1)}$ runs mild phase estimation to achieve completeness 1-1/(8p(n)) and soundness 1/(8p(n))
- 2. $V_x^{(2)}$ takes "AND" of N_1 iterations of $V_x^{(1)}$ to achieve constant completeness, and exponentially small soundness error
- 3. Take "OR" of $N_2 = O(p(n))$ iterations of $V_x^{(2)}$
 - Repeats the following N₂ times:
 - Applies $V_{x}{}^{\left(2\right)}$ and increments a counter by 1 if the output state is accept
 - Applies (V_x⁽²⁾)⁺
 - Accept iff counter is at least 1
 - Completeness is at least 1-2^{-p(n)}, Soundness is at most p(n)2^{-p(n)}
- Key point: The space used in the new verification procedure is O(log(p/(c-s)))+log(N₁)+log(N₂)=O(log(p/(c-s)))
- Other proofs achieve similar amplification results without phase estimation

Applications of Main Theorem

- Strong error reduction for unitary quantum logspace
 - i.e., for any a-b≥1/poly, QSPACE[log(n)](a,b)⊆ QSPACE[log(n)](1-2^{-poly},2^{-poly})
- Uselessness of quantum witnesses in log(n)-bounded QMA
 - Idea: Logspace algorithm with no witness can choose random log(n) bit basis state as witness, and then error amplify
 - i.e., log(n)-bounded QMA_{log(n)}(2/3,1/3)=BQSPACE[log(n)]
- QMA with exponentially small completeness-soundness gap is contained in PSPACE
 - i.e., **PreciseQMA PSPACE**
 - Proofs use Main theorem and "uselessness of quantum witness in log(n)-bounded QMA"
 - Has several applications to physics via Local Hamiltonian problem
- Strong error amplification of Matchgate computations
 - Physically motivated model (related to quantum computation with *noninteracting fermions*)
 - Known to be classically simulable [Valiant '02]
 - Uses equivalence of logspace quantum computation and matchgate computation [Jozsa et. al. '10]

A Complete Characterization of Unitary Quantum Space [F., Lin '16]

- Why are we interested in *unitary* quantum space complexity?
- Motivated by recent result [F., Lin '16]
 - Gives two natural complete problems for (unitary) BQSPACE[k(n)]
 - Under classical k(n)-space poly(n)-time reductions
 - Given a succinctly specified 2^{k(n)}x 2^{k(n)} PSD matrix A:
 - 1. Estimate a given entry of A⁻¹ (assuming A is *well-conditioned*)
 - 2. Estimating minimum eigenvalue of A to inverse exponential precision
 - Interestingly, the Matrix inversion problem with different parameter setting is complete for BQTIME[t(n)] as well
- As a corollary, we can show the lowerbound **PSPACE preciseQMA**
 - And so together with upperbound from today's results, preciseQMA=PSPACE
- For more details see *arXiv:1604.01384*

Open Questions

- Can we find space-efficient methods for in-place amplification of **QMA** with intermediate measurements?
 - Note that Marriott-Watrous projection operators explicitly use the inverse of the verification procedure
- What is the power of **QMA** with doubly-exponentially small gap?
 - Can show that this is still equal to PSPACE if protocol has perfect completeness
- Can we use this upperbound on preciseQMA to show upper bounds for other complexity classes?

Thanks!