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1. Basic Definitions



Unitary quantum space complexity

* We say that a family of quantum circuits {Q,}, = 10 acting on k(n) qubits
solves a promise problem L=(L,,L,,) if:

z € Lyes = (0°|QLI1) (10wt Q2 |0) > 2/3

T € Lo = (0°|QL11) (10w Q2 [0%) <1/3
 BQTIME[t(n)] is the class of promise problems solvable in quantum time
t(n):
* i.e., by a uniformly generated family of quantum circuits {Q,}, each composed of
O(t(n)) gates
 BQSPACE[k(n)] is the class of promise problems solvable in k(n) quantum
space
* i.e., by a uniformly generated family of quantum circuits {Q,} each acting on O(k(n))
qubits
 Subtleties in defining quantum space bounded computation
* Power of intermediate measurements?
* Our focus: unitary case
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* Problems whose solutions can be verified quantumly given a 4 »
guantum state as witness
* k(n)-bounded QMA _(c,s) is the class of promise problems )

L=(L,es,L1o) SO that there exists a verifier {V,} acting on
O(m(|x|)+k(|x])) qubits:
v € Lyes = ) (8] ® (%) VT IL) (Lowe Vi (1) © 0%)) > ¢

T € Lno = V1) (<¢| ® <Ok|) VJ’1><1|outi (|¢> X ’0k>> <s

* QMA is a central topic of study in quantum complexity theory

* “Quantum NP”

* Many connections to physics (i.e., estimating the ground state energy
of a Local Hamiltonian is QMA-complete [Kitaev’'02])

* But some of the most natural questions are embarrassingly open

* Our main result is a method for space-efficient QMA error-
amplification ICALP 2016



2. Past work: QMA error amplification



QMA error amplification using repetition
» “Repetition” [Kitaev '02]

* Ask Merlin to send many copies of the original witness

* Verifier repeats original protocol on each one, measures and takes majority vote of outcomes
* Using Chernoff bound, to obtain error 2°°, need O(p/(c-s)?) repetitions

* Problem with this: number of witness and space qubits grow with improving error bounds
* i.e., for any given p:

k—bounded QMA,,,(c, s) C (k-(’;)Q)—bounded QMA,, = (1-277,277)
cC— S c—s




“In-place” QMA amplification

* “Amplification without destroying witness” [Marriott and Watrous '04]

* Define two projectors: IIg = |0)(0|qne and II; = VJ\D(HOuth

* Notice the max. acceptance probability of V, is the maximal eigenvalue of ITyII; 11

* Verification procedure:
* Initialize a state consisting of Merlin’s witness tensored with ancilla qubits initialized to all-zero state
* Alternatingly measure {IIp,1 —IIp} and {II;,1 —II;} many times

* Use post processing to analyze results of measurements (rejecting if two consecutive

measurement outcomes differ too many times)

* Analysis relies on “Jordan’s lemma”

* Given two projectors, Hilbert space decomposes into 1 and 2-dimensional subspaces
invariant under projectors

 Basically allows verifier to repeat each measurement without “losing” Merlin’s witness
* Because application of these projectors “stays” inside 2D subspaces

* As a result, we can attain the same type of error reduction as in repetition, without
needing additional witness qubits

* However, we need additional space to keep track of measurement outcomes

k — bounded QMA,,, (¢, s) C (k + ﬁ) — bounded QMA,,,(1 —27P, 27P)
c—



3. Our results



Our results: Space-efficient QMA error amplification

* Nagaj, Wocjan, and Zhang [NWZ’11] improvements on Marriott-Watrous:

k—Dbounded QMA,(c, ) C (k+plog —) —bounded QMA,,(1-27",277)
 Notice to achieve error 2PV requires polynomial extra ancilla qubits!
* Main Theorem:

k — bounded QMA,,, (¢, s) C (k+ log p f .

* As a consequence, we show the first “strong” error amplification
procedure for unitary quantum logspace protocols

) —bounded QMA,,,(1 —277 277P)

* We give three proofs of main theorem using different procedures
* |’ll talk about the simplest one
* Other two proofs achieve better parameters



Main Theorem (Proof sketch 1/3)

* We’ll use the phase estimation algorithm [Kitaev ‘95]
* Important ingredient in many quantum algorithms
* Given quantum circuit for implementing unitary U and eigenvector |y> estimates
eigenphase 0
* Up to precision j with failure probability o using O(/og(1/ja)) ancilla qubits
* Define reflections Ro =2Ilp — I, Ry = 211, — 1

* These are the “Grover” reflections that apply a phase flip if not in the projected subspace

* Using Jordan’s lemma:
* Within 2D subspaces, the product RyR; is a rotation by an angle related to acceptance
probability of verifier V,

1. Use Fhase estimation on RyR; with Merlin’s state and ancillias set to O, to
amplify error to inverse po?ynomial (related to approach of [NWZ'11])

Accept if phase is above a certain threshold, reject otherwise

Do this with precision O(c-s) and failure probability a=1/(8p)

Completenessis 1-1/(8p), Soundness is 1/(8p)

Uses space O(log(p/(c-s)))




Main Theorem (Proof sketch 2/3)

1. V., runs mild phase estimation to achieve completeness 1-1/(8p(n)) and
soundness 1/(8p(n))

2. Take “AND” of N,=O(p(n)) iterations of V,!

* Let V,1? be the quantum circuit repeats the following N, times:
* Applies V,\Y and increments a counter if the output state is reject
. Applies (v,)"

* Accept iff counter is still set to O

* Completeness is 1-N,/8p(n)=1/2, Soundness is (1/(8p(n)))Ng2P(n)

ICALP 2016



Main Theorem (Proof sketch 3/3)

1. V.M runs mild phase estimation to achieve completeness 1-1/(8p(n)) and
soundness 1/(8p(n))

2.V, takes “AND” of N, iterations of V,(!) to achieve constant completeness, and
exponentially small soundness error

3. Take “OR” of N,=0O(p(n)) iterations of V,?

* Repeats the following N, times:
« Applies V,[2) and increments a counter by 1 if the output state is accept
 Applies (V,12)7

* Accept iff counter is at least 1

» Completeness is at least 1-2-P("), Soundness is at most p(n)2-P(M)

. Kef/ point: The space used in the new verification procedure is
O(log(p/(c-s)))+log(N,)+log(N,)=0(log(p/(c-s)))
* Other proofs achieve similar amplification results without phase estimation

ICALP 2016



Applications of Main Theorem

Strong error reduction for unitary quantum logspace
* i.e., for any a-b>1/poly, QSPACE[log(n)](a,b) S QSPACE[log(n)](1-27P°Y,2-Polv)

Uselessness of quantum witnesses in log(n)-bounded QMA

* Idea: Logspace algorithm with no witness can choose random log(n) bit basis state as
witness, and then error amplify

* i.e., log(n)-bounded QMA,,,)(2/3,1/3)=BQSPACE[log(n)]
QMA with exponentially small completeness-soundness gap is contained in
PSPACE
* j.e., PreciseQMA < PSPACE
* Proofs use Main theorem and “uselessness of quantum witness in log(n)-bounded QMA”
* Has several applications to physics via Local Hamiltonian problem

Strong error amplification of Matchgate computations
* Physically motivated model (related to quantum computation with noninteracting fermions)
* Known to be classically simulable [Valiant ‘02]

. Ulsgioequivalence of logspace quantum computation and matchgate computation [Jozsa et.
al.

ICALP 2016



A Complete Characterization of Unitary
Quantum Space [F., Lin “16]

* Why are we interested in unitary quantum space complexity?

* Motivated by recent result [F., Lin ‘16]

* Gives two natural complete problems for (unitary) BQSPACE[k(n)]

* Under classical k(n)-space poly(n)-time reductions
* Given a succinctly specified 2k 2k pSD matrix A:
1. Estimate a given entry of A1 (assuming A is well-conditioned)
2. Estimating minimum eigenvalue of A to inverse exponential precision

* Interestingly, the Matrix inversion problem with different parameter setting is complete for
BQTIME[t(n)] as well

* As a corollary, we can show the lowerbound PSPACE< preciseQMA
* And so together with upperbound from today’s results, preciseQMA=PSPACE

* For more details see arXiv:1604.01384



Open Questions

* Can we find space-efficient methods for in-place amplification of

QMA with intermediate measurements?
* Note that Marriott-Watrous projection operators explicitly use the inverse of
the verification procedure
* What is the power of QMA with doubly-exponentially small gap?
* Can show that this is still equal to PSPACE if protocol has perfect
completeness
* Can we use this upperbound on preciseQMA to show upper bounds

for other complexity classes?



Thanks!



