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1.	Basic	Definitions
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Unitary	quantum	space	complexity
• We	say	that	a	family	of	quantum	circuits	{Qx}x∈{0,1}n acting	on	k(n) qubits	
solves a	promise	problem	L=(Lyes,Lno)	if:

• BQTIME[t(n)]	is	the	class	of	promise	problems	solvable	in	quantum	time
t(n):
• i.e.,	by	a	uniformly	generated	family	of	quantum	circuits	{Qx},	each	composed	of
O(t(n))	gates

• BQSPACE[k(n)]	is	the	class	of	promise	problems	solvable	in	k(n)	quantum	
space
• i.e.,	by	a	uniformly	generated	family	of	quantum	circuits	{Qx}	each	acting	on	O(k(n))	
qubits

• Subtleties	in	defining	quantum	space	bounded	computation
• Power	of	intermediate	measurements?
• Our	focus:	unitary case
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Quantum	Merlin-Arthur
• Problems	whose	solutions	can	be	verified	quantumly given	a	

quantum	state	as	witness
• k(n)-bounded	QMAm(c,s)	is	the	class	of	promise	problems	
L=(Lyes,Lno)	so	that	there	exists	a	verifier	{Vx}	acting	on	
O(m(|x|)+k(|x|))	qubits:

• QMA is	a	central	topic	of	study	in	quantum	complexity	theory
• “Quantum	NP”
• Many	connections	to	physics	(i.e.,	estimating	the	ground	state	energy	
of	a	Local	Hamiltonian	is	QMA-complete	[Kitaev’02])

• But	some	of	the	most	natural	questions	are	embarrassingly	open
• Our	main	result	is	a	method	for	space-efficient	QMA error-
amplification ICALP	2016
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2.	Past	work:	QMA error	amplification
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QMA error amplification	using	repetition
• “Repetition”	[Kitaev ’02]

• Ask	Merlin	to	send	many	copies	of	the	original	witness	
• Verifier	repeats	original	protocol	on	each	one,	measures	and	takes	majority	vote	of	outcomes	
• Using	Chernoff bound,	to	obtain	error	2-p,	need	O(p/(c-s)2)	repetitions
• Problem	with	this:	number	of	witness	and	space	qubits	grow	with	improving	error	bounds
• i.e.,	for	any	given	p:
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“In-place”	QMA amplification
• “Amplification	without	destroying	witness”	[Marriott	and	Watrous ’04]

• Define	two	projectors:		 and	
• Notice	the	max.	acceptance	probability	of	Vx is	the	maximal	eigenvalue	of	
• Verification	procedure:

• Initialize	a	state	consisting	of	Merlin’s	witness	tensored with	ancilla qubits	initialized	to	all-zero	state
• Alternatingly	measure							 and																												many	times

• Use	post	processing	to	analyze	results	of	measurements	(rejecting	if	two	consecutive	
measurement	outcomes	differ	too	many	times)

• Analysis	relies	on	“Jordan’s	lemma”
• Given	two	projectors,	Hilbert	space	decomposes	into	1	and	2-dimensional	subspaces	
invariant	under	projectors

• Basically	allows	verifier	to	repeat	each	measurement	without	“losing”	Merlin’s	witness
• Because	application	of	these	projectors	“stays”	inside	2D	subspaces

• As	a	result,	we	can	attain	the	same	type	of	error	reduction	as	in	repetition,	without	
needing	additional	witness	qubits

• However,	we	need	additional	space	to	keep	track	of	measurement	outcomes

{⇧0, 1�⇧0} {⇧1, 1�⇧1}
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3.	Our	results
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Our	results:	Space-efficient	QMA error	amplification

• Nagaj,	Wocjan,	and	Zhang	[NWZ’11]	improvements	on	Marriott-Watrous:

• Notice	to	achieve	error	2-poly requires	polynomial	extra	ancilla qubits!
• Main	Theorem:

• As	a	consequence,	we	show	the	first	“strong”	error	amplification	
procedure	for	unitary	quantum	logspace protocols
• We	give	three	proofs	of	main	theorem	using	different	procedures	

• I’ll	talk	about	the	simplest	one
• Other	two	proofs	achieve	better	parameters
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Main	Theorem	(Proof	sketch	1/3)
• We’ll	use	the	phase	estimation	algorithm	[Kitaev ‘95]

• Important	ingredient	in	many	quantum	algorithms	
• Given	quantum	circuit	for	implementing	unitary	U	and	eigenvector	|𝜓>	estimates	
eigenphase θ
• Up	to	precision	j with	failure	probability	α using	O(log(1/jα)) ancilla qubits

• Define	reflections
• These	are	the	“Grover”	reflections	that	apply	a	phase	flip	if	not	in	the	projected	subspace

• Using	Jordan’s	lemma:
• Within	2D	subspaces,	the	product	R0R1 is	a	rotation	by	an	angle	related	to	acceptance	probability	of	verifier	Vx

1. Use	phase	estimation	on	R0R1	with	Merlin’s	state	and	ancillias set	to	0,	to	
amplify	error	to	inverse	polynomial	(related	to	approach	of	[NWZ’11])
• Accept	if	phase	is	above	a	certain	threshold,	reject	otherwise
• Do	this	with	precision	O(c-s) and	failure	probability	α=1/(8p)
• Completeness	is		1-1/(8p),	Soundness	is	1/(8p)
• Uses	space	O(log(p/(c-s)))
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Main	Theorem	(Proof	sketch	2/3)
1. Vx

(1) runs	mild	phase	estimation	to	achieve	completeness	1-1/(8p(n))	and	
soundness	1/(8p(n))

2. Take	“AND”	of	N1=O(p(n)) iterations	of	Vx
(1)

• Let	Vx
(2) be	the	quantum	circuit	repeats	the	following	N1 times:

• Applies	Vx
(1) and	increments	a	counter	if	the	output	state	is	reject

• Applies	(Vx
(1))†	

• Accept	iff counter	is	still	set	to	0
• Completeness	is	1-N1/8p(n)≥1/2, Soundness	is	(1/(8p(n)))N1≤2-p(n)
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Main	Theorem	(Proof	sketch	3/3)
1. Vx

(1) runs	mild	phase	estimation	to	achieve	completeness	1-1/(8p(n))	and	
soundness	1/(8p(n))

2. Vx
(2) takes	“AND”	of	N1	iterations	of	Vx

(1)	to	achieve	constant	completeness,	and	
exponentially	small	soundness	error

3. Take	“OR”	of	N2=O(p(n)) iterations	of	Vx
(2)

• Repeats	the	following	N2 times:
• Applies	Vx

(2) and	increments	a	counter	by	1	if	the	output	state	is	accept
• Applies	(Vx

(2))†	
• Accept	iff counter	is	at	least	1
• Completeness	is	at	least	1-2-p(n), Soundness	is	at	most	p(n)2-p(n)

• Key	point:	The	space	used	in	the	new	verification	procedure	is
O(log(p/(c-s)))+log(N1)+log(N2)=O(log(p/(c-s)))
• Other	proofs	achieve	similar	amplification	results	without	phase	estimation
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Applications	of	Main	Theorem
• Strong	error	reduction	for	unitary	quantum	logspace

• i.e.,	for	any	a-b≥1/poly,	QSPACE[log(n)](a,b)⊆ QSPACE[log(n)](1-2-poly,2-poly)
• Uselessness	of	quantum	witnesses	in	log(n)-bounded	QMA

• Idea:	Logspace algorithm	with	no	witness	can	choose	random	log(n) bit	basis	state	as	
witness,	and	then	error	amplify

• i.e.,	log(n)-bounded	QMAlog(n)(2/3,1/3)=BQSPACE[log(n)]
• QMA with	exponentially	small	completeness-soundness	gap	is	contained	in	
PSPACE	
• i.e., PreciseQMA⊆PSPACE
• Proofs	use	Main	theorem	and	“uselessness	of	quantum	witness	in	log(n)-bounded	QMA”
• Has	several	applications	to	physics	via	Local	Hamiltonian	problem

• Strong	error	amplification	of	Matchgate computations
• Physically	motivated	model	(related	to	quantum	computation	with	noninteracting fermions)
• Known	to	be	classically	simulable [Valiant	‘02]
• Uses	equivalence	of	logspace quantum	computation	and	matchgate computation	[Jozsa et.	
al.	‘10]
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A	Complete	Characterization	of	Unitary	
Quantum	Space	[F.,	Lin	‘16]
• Why	are	we	interested	in	unitary quantum	space	complexity?
• Motivated	by	recent	result	[F.,	Lin	‘16]

• Gives	two	natural	complete	problems	for	(unitary)	BQSPACE[k(n)]
• Under	classical	k(n)-space	poly(n)-time	reductions
• Given	a	succinctly	specified	2k(n)x	2k(n) PSD	matrix	A:

1. Estimate	a	given	entry	of	A-1 (assuming	A	is	well-conditioned)
2. Estimating	minimum	eigenvalue	of	A	to	inverse	exponential	precision

• Interestingly,	the	Matrix	inversion	problem	with	different	parameter	setting	is	complete	for	
BQTIME[t(n)]	as	well	

• As	a	corollary,	we	can	show	the	lowerbound PSPACE⊆preciseQMA
• And	so	together	with	upperbound from	today’s	results,		preciseQMA=PSPACE

• For	more	details	see	arXiv:1604.01384
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Open	Questions

• Can	we	find	space-efficient	methods	for	in-place	amplification	of	
QMA	with intermediate	measurements?
• Note	that	Marriott-Watrous projection	operators	explicitly	use	the	inverse	of	
the	verification	procedure

• What	is	the	power	of	QMA with	doubly-exponentially	small	gap?
• Can	show	that	this	is	still	equal	to	PSPACE if	protocol	has	perfect	
completeness

• Can	we	use	this	upperbound on	preciseQMA to	show	upper	bounds	
for	other	complexity	classes?
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Thanks!
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