On Beating the Hybrid Argument

Bill Fefferman (Caltech)

Joint with Ronen Shaltiel (Haifa), Chris Umans (Caltech), and Emanuele Viola (Northeastern)

Hybrid Argument

- U uniform distribution over binary strings
- $G:\{0,1\}^{N} \to \{0,1\}^{M}$
- [Yao '82] Suppose we have a circuit C that ϵ -distinguishes U_M from $G(U_N)$, then there is a similar size "predictor circuit" P

$$|\Pr[C(U_M) = 1] - \Pr[C(G(U_N)) = 1]| > \epsilon$$

 $\Rightarrow \Pr_{x \sim U}[P(G(x)_{1 \dots_{i-1}}) = G(x)_i] > \frac{1}{2} + \epsilon/M$

- Contrapositive: Unpredictability \Rightarrow Indistinguishability
 - Hybrid loss becomes hurdle when M >> 1/ε

Our results

We show the following consequences can be achieved if the loss of the hybrid argument can be avoided:

- 2. Better pseudorandom generators for small space
 - E.g., prove output of INW generator with seed length O(log n log log n) is unpredictable with advantage 1/log n against polylog width read-once branching programs

Prove that such a beating is possible in restricted cases:

 Results in improved pseudorandom generators against classes related to AC⁰

How (classically) powerful are quantum computers?

- BQP Class of languages that can be decided efficiently by a quantum computer
- Where is BQP relative to NP?
 - Is there a problem that can be solved with a quantum computer that can't be verified classically (BQP ⊄ NP?)
 - Can we give evidence?
 - Oracle separations

Is **BQP** ⊄ **PH**?

- History: Towards stronger oracle separations
 - [Bernstein & Vazirani '93]
 - Recursive Fourier Sampling?
 - [Aaronson '09]
 - Conjecture: "Fourier Checking" not in PH
 - Assuming GLN
 - [Aaronson '10] (counterexample!)
 - GLN false (depth 3)

What can't PH^o do?

- Essentially equivalent to: what can't AC⁰ do?
 - AC⁰ is constant depth, AND-OR-NOT circuits of (polynomial size) and unbounded fanin
 - In circuit, ∃ becomes OR, ∀ becomes AND and oracle string an input of exponential length

Equivalent Setup

- Want a function $f:\{0,1\}^N \rightarrow \{0,1\}$
 - in **BQLOGTIME**
 - O(log N) quantum steps
 - random access to N-bit input: $|i\rangle$ $|z\rangle$ \rightarrow $|i\rangle$ $|z \oplus f(i)\rangle$
 - accept with high probability iff f(input) = 1
 - but not in AC⁰

Equivalent Setup

- More general (and transformable to previous setting):
 - two distributions on N bit strings D_1 , D_2
 - BQLOGTIME algorithm that distinguishes them
 - proof that AC⁰ cannot distinguish them
 - we will always take D₂ to be uniform

What can't AC⁰ do?

- PARITY and MAJORITY not in AC⁰ [FSS '84]
- AC⁰ circuits can't *distinguish*:
 - 1. Bits distributed uniformly
 - 2. Bits drawn from "Nisan-Wigderson" distribution derived from:
 - 1. function hard (on average) for AC⁰ to compute
 - 2. Nearly-disjoint "subset system"

Our work: There exists a specific choice of these subsets, for which the resulting distribution generated by the MAJORITY function can be distinguished (from uniform) quantumly!

Formal: Nisan-Wigderson PRG

• $S_1, S_2, ..., S_M \subset [N]$ is an (N', p)-design if

- for all i,
$$|S_i| = N'$$

– for all i ≠ j, $|S_i \cap S_i| \le p$

Nisan-Wigderson PRG

- f:{0,1}^{N'}→ {0,1} is a hard function (e.g., MAJORITY)
- S₁,...,S_M ⊂ [N] is an (N['], p)-design

$$G(x)=f(x_{|S_1})\circ f(x_{|S_2})\circ ...\circ f(x_{|S_M})$$

truth table of f:

010100101111101010111001010

Distributions distinguishable from Uniform with a quantum computer

 $D_A = (x, y)$: pick x uniformly from $\{1, -1\}^N$, set $y_i = sgn((Ax)_i)$

- Goal: Matrix A with rows that
 - Have large support
 - 2. Have supports with small pairwise intersection (form some (N',p)-design)
 - 3. Are pairwise orthogonal
 - 4. Should be an efficient quantum circuit (product of polylog(N) local unitaries)

Quantum Algorithm

```
D_A = (x, y): pick x uniformly from \{1, -1\}^N, set y_i = sgn((Ax)_i)
```

- We claim there is a quantum algorithm to distinguish D_A from U_{2N}
 - 1. enter uniform superposition over log N qubits
 - 2. query x and multiply into phases: $\sum_i x_i \mid i > 1$
 - 3. apply A: ∑_i (Ax)_i |i>
 - 4. query y and multiply into phases: $\sum_i y_i(Ax)_i | i > 1$
 - 5. measure in Hadamard basis, accept iff (0,0,...,0)
- Crucially, after step 4 we are back to all positive amplitudes in case oracle is D_A
- But in case oracle is U_{2N} with high prob. we have random mix of signs (low weight on $|0....0\rangle$ after final Hadamard)

Constructing A using "Paired Lines"

- Goal: construct an N x N unitary matrix with supports of rows forming (N',p)-design
 - Identify with each row a pair of parallel "lines" in the affine plane $\mathbb{F}_{\sqrt{N}} imes \mathbb{F}_{\sqrt{N}}$
 - Identify points in the plane with columns
- For each row, as we go across columns:
 - +1 if point is on one of the lines
 - -1 if point is on other
 - 0 otherwise
- Use geometry of plane to argue orthogonality (and thus unitarity)

Construction

- Each row will be supported on two parallel "paired-lines"
- Identify columns with affine plane

$$\mathbb{F}_{\sqrt{N}} \times \mathbb{F}_{\sqrt{N}}$$

Construction

- Each row will be supported on two parallel "paired-lines"
- Identify columns with affine plane

$$\mathbb{F}_{\sqrt{N}} \times \mathbb{F}_{\sqrt{N}}$$

Putting it all together

- "Technical Core": We construct an efficient quantum circuit realized by unitary whose (un-normalized) rows are vectors from a paired-lines construction
 - $-N\times N$
 - Half of the rows will correspond to the paired-lines vectors
- Note that we have a quantum algorithm, as described before, that uses this unitary A to distinguish between D_A and U_{2N}
- But distinguishing should be hard for AC⁰ since (x,sgn(Ax)) is instantiation of NW generator!

But why aren't we finished? (hybrid loss)

- Distribution on (3/2)N bits that is the NW generator w.r.t. MAJORITY on N^{1/2} bits, with output length N/2
- Suppose AC⁰ can distinguish from uniform with constant gap ε
 - proof: distinguisher to predictor, and then circuit for majority w/ success $\frac{1}{2} + \epsilon/(N/2)$
 - but already possible w/ success $\frac{1}{2} + \Omega(1/N^{1/4})$
 - ... no contradiction

Nonetheless, we **conjecture** this distribution cannot be distinguished by AC^0 with constant gap ϵ

Beating the Hybrid Argument? "Resampling lemma"

(informal) S is a resampler for function f(x) if
 S(x) is uniform on {x': f(x') = f(x)}

Lemma (informal): Suppose f has resampler, then distinguishing:

M repetitions of $(U_n, f(U_n))$ from

uniform

is as hard as computing (on avg.) f(x).

(Nontrivial for large M!)

recall: need M < 1/adv(f) for hybrid argument

now: M can be as large as exp(n), for suitably hard functions f

Resampling lemma allows us to beat Hybrid Argument in restricted cases

- Proves the "disjoint case" of Conjecture:
 - Theorem: $M = \exp(n)$ copies of U_n , $MAJ(U_n)$ indistinguishable from uniform
 - Don't know of resampler for MAJORITY!
 - Do for Hamming Weight problem

weighted mixture

```
YES: x has weight = n/2 + t
```

NO: x has weight = n/2 - t

Resampler: randomly permute bits!

- PRGs with improved stretch for
 - AC⁰[p] with prime p > 2 (via parity)
 - AC⁰ with a not-too-large number of majority gates (via parity)
 - AC⁰[2] via the Connectivity Matrix Determinant problem [Ishai + Kushilevitz]

Conclusions

- Showed settings in which "beating the hybrid argument" proves new results in complexity
- Proved that in restricted cases, we can beat the hybrid argument
 - Enough to show improved PRGs against classes related to AC⁰
 - Proves "disjoint case" of quantum conjecture!