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1. Basics



Classical Complexity Theory

P
* Class of problems efficiently solved on classical computer

* NP

* Class of problems with efficiently
verifiable solutions

* Characterized by SAT
* Input: W:{0,1}">{0,1}

* n-variable 3-CNF formula
* Eg, (VX VX)) A(x; V=XV Xg) A. ..

* Problem: 3xy,%,,...,X, so that W(x)=17

* Could use a box solving SAT to solve any problem in NP




Merlin-Arthur A
=

»

* “Randomized generalization” of NP

* Can think of a game between all-knowing
but potentially dishonest Merlin trying to
prove statement to efficient randomized
classical computer (Arthur)

e |f statement is true, there exists a
polynomial length classical bitstring or
“witness” to convince Arthur to accept with
high probability

* If statement is false, then every “witness” is
rejected by Arthur with high probability



Quantum Merlin-Arthur

* QMA: Same setup, now Arthur is BQP machine,

witness is polynomial qubit quantum state ’

* k-Local Hamiltonian problem is QMA-complete (when k>2) (Kitaev ‘02)
* Input: H = YL, H;, each term H; is k-local
* Promise, for (a,b) so that b-a>1/poly(n), either:
e J|Y)so that (Y|H|P) < a
* VI): @H|Y) =b
* Our question: Is there an advantage to quantum witness?

* QCMA: The witness is classical basis state

* QCMA € QMA (trivial)

* IsQMAC QCMA? (Aharonov & Naveh ‘04)
* AN’04 conjecture the answer is yes (because it’s feasible that for
every k-local Hamiltonian there exists some efficient quantum circuit

that prepares the ground state)
* But we still have few formal results about this question...




2. “Quantum oracles”



Variants of quantum “oracle”

“Standard”
* Given f:{0,1}">{0,1}™
o Ue|x>|y> = [x>|yef(x)>
* Notice U= Ufl£Ug,
“In-place” (Kashefi et. al. ‘01, de Beaudrap et. al’01, Aaronson '02...)
* Given permutation o:[N]=>[N]
e P |i>=>|aol(i)>
* Notice P #P =P,
“Quantum Oracle” (e.g., Aaronson & Kuperberg '07)
* Quantum algorithm can apply black-box unitary {U}
Finding oracle separations between complexity classes is a often far easier problem than
the unrelativized separation, but what do they actually tell us?
* Tell us about proof techniques that don’t suffice

* My motivation: If we don’t know how to find a relativized separation we are incredibly ignorant
about the underlying complexity classes.



“Standard” vs “in-place” oracles

* Are there tasks that we can accomplish with dramatically fewer queries in either model?
* In-place > standard
. 1 .
* Consider 0:[N2]>[N?], want to prepare \/_NZiE[N] |o(i)>
* Requires 1 query to “in-place” o
1 .
* Prepare \/—NZI-E[N] [i>
* Query “in-place” o
« Requires Q(vVN?) =Q(N) queries with “standard” o (Ambainis et. al., ‘10)
* Related to “index erasure” problem
* ie,can preparevlﬁ ZiE[N] |i>] a(i)> with one standard query
e To “erase index” requires Q(N) queries
* Standard > In-place
. 1 . . 1 .
* Suppose S € [N?], given mzies |i>]o(i)>, want to prepare mzies |i>]0>
* Can do this with 1 query to standard oracle for o
* Seems harder for an In-place o...
* How about inverting permutation?
* i.e.,iso(1) odd or even?
e Requires VN2=N standard queries (Ambainis '00)
* We show it requires N in-place queries, conjecture it requires N2 (no Grover for in-place oracles!)



3. QMA/QCMA oracle separations



Past work: Aaronson & Kuperberg ‘07

Result 3{U,} aMAlYn}c acmaiUn}
Choose an n-qubit state |{) uniformly at random

Define n+1 qubit unitary
. U { )b~ [)[be1)
¥ L@)Ib)>e)b) if (Wlg) = 0

Problem: “Identity checking”: Given quantum oracle access to unitary U,
promised either U=U, or U=Id. Which is the case?

ldentity checking is in QMA{Un}
¢ Quantum witness is the state |{)

Not in QCMAUYn!
* Proof by “Geometrical” lemma
* Intuition: Polynomial classical bits are not enough to describe |{)



What (else) are quantum proofs good for?

 First attempt to separate QMA from QCMA relative to standard oracle (that doesn’t work)

* Consider the following problem (and let N=2"):
* @Given standard oracle access to f:{0,1}"-=>{0,1} and promised either:
*  “Yes case”: f has exactly VN inputs that map to 1
*  “No case”: f has at most 0.9vN inputs that map to 1
*  Which is the case?
* First off: problem shouldn’t be in QCMA
* Intuition is clear: subset of inputs that map to one is unstructured and exponential in size
* This can be formalized using e.g., quantum polynomial method
* Butisitin QMA?
«  Attempt: Ask Merlin to give you state uniformly supported on a subset SC {0,1}" of size exactly VN
* i.e., honest Merlin sends %ers [x)
* Now Arthur queries f in an output register:
= Zresl010) = m=TresI0IECO)
* Measures output register and accepts iff he obtains 1
* Notice if we could only be certain that Merlin sent us state uniformly supported on exactly VN inputs, we’d be done

* Note thatin that “No case” the probability we accept is at most 0.9
* But verifying that Merlin really sent this state seems extremely hard...



Our result: In-place oracle separation

« 3{P,} QMAPs} ¢ QCMALPs}

* [ntuition:
* 0:[N?]->[N?], N=2n
* Inverting o has exponential query complexity in standard oracle model
* Suppose we could fi{]d a decision problem in which to decide “yes” from “no”
requires preparing \/—Nzie[N] |o—1(i))
* This problem would be in QMA{s}
* Merlin sends \/iNZiE[N] lo~1(1))
* Protocol is sound! Merlin can’t cheat .
* Arthur applies P, and checks that the resulting state is \/—NZiE[N] i)

* This problem should not be in QCMA{Ps}
* Preparing this state seems similar to permutation inversion
* The polynomial length classical witness shouldn’t help much...



Our (In-place) oracle problem

“Yes” “No”
* Definitions: with respect to 0:[N?]->[N?] o 1(1) 8 2
* Define S(o)={j: O'(]) € [N]} 0.—1(2) 2 2
* Call o “Even” if S(g) has 2/3 even elements (and also say S(o) is “Even Preimage”) a71(3) 1 1
* Call o “Odd” if S(o) has 2/3 odd elements (and also say S(o) is “Odd Preimage”) o-1(4) 3 3
* “Preimage checking”: Given in-place oracle access to P, o 15 6 .
* “Yes case”: o is “Even” 1
* “No case”: o is “Odd” 0_1(6) 7 7
* Preimage Checking is in QMAFe 0_1(7) 9 8
* Honest Merlin sends \/iNZiE[N] lo-1(1)) 0_1(2) 5 5
* With probability 72 Arthur measures Merlin’s state, accepts if even o) 4 4

* With probability %2 Arthur runs in-place oracle on Merlin’s state

* Note that if Merlin is honest Arthur is left with \/iNZiE[N] |1) (example with N=3)

e Arthur can check this!



QCMAWs} [ower bound: Proof overview

* (Rough) Goal: Find infinite set of permutations {P; ,, }.»1 and unary

language L€ QMAPon} 5o that for any QCMA machine M, 3 n
MFon(1m)2L(1")

* Fix an enumeration of all QCMA machines My,M{,M,,...

* Will find, for each M, some “Even” ¢ that cannot be distinguished by
M from an “Odd” ¢’

e This suffices to obtain our goal



QCMAYs} [ower bound: Proof details (1)

Step 1/3: “Witness conditioning”
Enumerate all quantum verifiers Mg,My,M,, ...

* For each fixed machine M;:

* There’s a mapping that takes each “Even” preimage S to the best polynomial length

witness for that preimage
* i.e., the witness that convinces M; to accept a permutation whose preimage is S
with highest probability
. = 2
+ Define Sppen ={S  [N?] ||5| = N,|S O Zppon| = -N} aven
\
* Define S(w) € S,,.,, to be the set of even preimages in which w is the
witness that leads M; to accept with highest probability \
* Note that the sets {S(w), S(Wy),..., S(W,pm))} partition Sepen

¢ Thus there must exist a w; so that:
ISl 2 [Sevenl/2P™

*  We will restrict ourselves to choosing an Even permutation with preimage in S( ) S(W )
J

* This effectively “hardwires” this w; into M (since each even permutation
now corresponds to the same witness)

* Reduced the problem to a in-place oracle query problem

* Will prove there exists an even ¢ such that S(o) € S(wj) and still M, requires
exponential queries to decide if given in-place oracle access to o or some “Odd” o
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QCMAYs} [ower bound: Proof details (2)

 Step 2/3: “Fixing lemma”:
e Definition: S € S,,.,, is 6-distributed if:
* There exists a set S¢iyeq S [N?] so that:
1. Sfixeq is a subset of every SES
2. |Sflxed N Zevenl <z N andlsflxed N Zoddl <z N

3. Foreveryelementi E [N?]/Stixeq, L appears /n at most N6fract/on of SES
* Goal: Output a set S’ (Wj) c S(wj) that is B-distributed (0<p<1)

* Procedure works by starting with S(Wj)
* Until condition 3 above is satisfied:

a) Take the i’ thatisin more than NO fraction of sets and add it to Stixed
b) Remove all sets that don’t contain i’
* Repeat steps a & b until condition 3 is satisfied

* Note: counting argument shows that S’(Wj) satisfies property 2.
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QCMAYs} [ower bound: Proof details (3)

* Step 3/3: “Query lower bound theorem for permutations whose preimage form a fixed subset system”

 Theorem. Suppose S € S, ., is 6-distributed. Then there exists an “Even” permutation o so that S(¢) € S

and an “Odd” permutation so that to tell them apart with bounded probability requires Q(N‘S/Z) in-place
queries

* Proof: new “Adversary bound for in-place oracles”
* Adaptation of Ambainis original result for standard oracles
» Theorem: Let o be some subset of permutations acting on [N2].
* Suppose f: 6->{0,1}, and let gy be the set of permutations that f maps to 1, and oo be the set of permutations that f maps to 0.
* IfdRC @y x oy SO that:
For every ox< aves there exists at least m different o, € oo so that (o, 0y) € R
For every o, ano there exists at least m’ different ox & aves so that (o, 0y) € R

Let Iyi=number of different o, & ano so that (o, 6,) E R and ox(i)#oy(i)
Let I, =number of different o, E avyes so that (o, 0,) € R and ox(i)zo,(i)

uerwNe

Imax =max (ox, oy) ER |x,ily,l

Then, given an in-place oracle P, any quantum algorithm that correctly evaluates f on all inputs with constant probability requires at least

Q\/’"m" | ies t te (o)
-I— In place queries 1o compute T\O0

max

*  We'll use the &-distributed property of the subset system to show an “R” relation so that the function f, which evaluates to 1

on “Even” ¢ so that S(o) € S and evaulates to 0 on “Odd” o requires an exponential number of queries to compute.



A few open questions about QMA

* QMAJQCMA relative to a standard oracle?

e Can this construction be extended?

e Unrelativized separations?

* Seems to require new insights on entanglement structure of ground states of
local Hamiltonians

* QMA vs QMA(2)
* In QMA(2) Arthur receives tensor product of two pure quantum states on
polynomial qubits
* QMAS QMA(2) is trivial, but is QMA(2)& QMA?

* Closely connected to “separability testing” and “quantum de Finetti theorems”



Thanks!



