Quantum vs Classical Proofs and In-place Oracles

Bill Fefferman (QuICS, UMD/NIST) Joint with Shelby Kimmel (QuICS, UMD/NIST)

Outline

- Basics
- "Quantum oracles"
- QMA/QCMA oracle separation

1. Basics

Classical Complexity Theory

• P

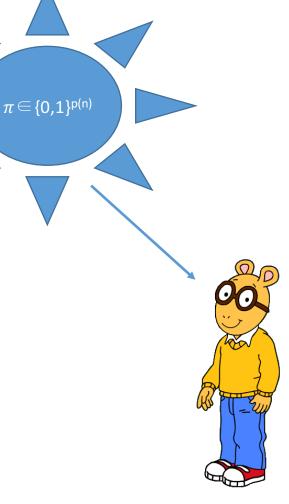
• Class of problems efficiently solved on classical computer

• NP

- Class of problems with efficiently verifiable solutions
- Characterized by SAT
 - Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$
 - n-variable 3-CNF formula
 - E.g., $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor -x_2 \lor x_6) \land ...$
 - Problem: $\exists x_1, x_2, ..., x_n$ so that $\Psi(x)=1$?
- Could use a box solving SAT to solve any problem in NP

Merlin-Arthur

- "Randomized generalization" of NP
- Can think of a game between all-knowing but potentially dishonest Merlin trying to prove statement to efficient randomized classical computer (Arthur)
- If statement is *true*, there exists a polynomial length classical bitstring or "witness" to convince Arthur to accept with high probability
- If statement is *false*, then every "witness" is rejected by Arthur with high probability



Quantum Merlin-Arthur

- QMA: Same setup, now Arthur is **BQP** machine, witness is polynomial qubit quantum state
- *k-Local Hamiltonian* problem is **QMA**-complete (when k≥2) (Kitaev '02)
 - Input: $H = \sum_{i=1}^{M} H_i$, each term H_i is k-local
 - Promise, for (a,b) so that b-a≥1/poly(n), either:
 - $\exists |\psi\rangle$ so that $\langle \psi | H | \psi \rangle \leq a$
 - $\forall |\psi\rangle : \langle \psi | \mathbf{H} | \psi \rangle \ge \mathbf{b}$
- Our question: Is there an advantage to quantum witness?
 - QCMA: The witness is classical basis state

 - - AN'04 conjecture the answer is *yes* (because it's feasible that for every k-local Hamiltonian there exists some efficient quantum circuit that prepares the ground state)
 - But we still have few formal results about this question...

 $|\psi\rangle$

2. "Quantum oracles"

Variants of quantum "oracle"

- "Standard"
 - Given $f:\{0,1\}^n \rightarrow \{0,1\}^m$
 - $U_f: |x>|y> \rightarrow |x>|y\oplus f(x)>$
 - Notice $U_f = U_f^{-1} \neq U_{f^{-1}}$
- "In-place" (Kashefi et. al. '01, de Beaudrap et. al.'01, Aaronson '02...)
 - Given permutation $\sigma:[N] \rightarrow [N]$
 - $P_{\sigma}: |i\rangle \rightarrow |\sigma(i)\rangle$
 - Notice $P_{\sigma} \neq P_{\sigma} = P_{\sigma}^{-1}$
- "Quantum Oracle" (e.g., Aaronson & Kuperberg '07)
 - Quantum algorithm can apply black-box unitary $\{U_n\}$
- Finding oracle separations between complexity classes is a often far easier problem than the unrelativized separation, but what do they actually tell us?
 - Tell us about proof techniques that don't suffice
 - *My motivation*: If we don't know how to find a relativized separation we are incredibly ignorant about the underlying complexity classes.

"Standard" vs "in-place" oracles

- Are there tasks that we can accomplish with dramatically fewer queries in either model?
- In-place > standard
 - Consider $\sigma:[N^2] \rightarrow [N^2]$, want to prepare $\frac{1}{\sqrt{N}} \sum_{i \in [N]} |\sigma(i)\rangle$
 - Requires 1 query to "in-place" σ
 - Prepare $\frac{1}{\sqrt{N}}\sum_{i \in [N]} |i\rangle$
 - Query "in-place" σ
 - Requires $\Omega(\sqrt{N^2}) = \Omega(N)$ queries with "standard" σ (Ambainis et. al., '10)
 - Related to "index erasure" problem
 - i.e., can prepare $\frac{1}{\sqrt{N}}\sum_{i\in[N]}|i\rangle|\sigma(i)\rangle$ with one standard query
 - To "erase index" requires $\Omega(N)$ queries
- Standard > In-place
 - Suppose $S \subseteq [N^2]$, given $\frac{1}{\sqrt{|S|}} \sum_{i \in S} |i|\sigma(i)\rangle$, want to prepare $\frac{1}{\sqrt{|S|}} \sum_{i \in S} |i|\sigma(i)\rangle$
 - Can do this with 1 query to standard oracle for σ
 - Seems harder for an In-place σ...
 - How about inverting permutation?
 - i.e., is $\sigma^{-1}(1)$ odd or even?
 - Requires $\sqrt{N^2}$ =N standard queries (Ambainis '00)
 - We show it requires N in-place queries, conjecture it requires N² (no Grover for in-place oracles!)

3. QMA/QCMA oracle separations

Past work: Aaronson & Kuperberg '07

- Result $\exists \{U_n\} \mathbf{QMA}^{\{U_n\}} \not\subset \mathbf{QCMA}^{\{U_n\}}$
- Choose an n-qubit state $|\psi\rangle$ uniformly at random
- Define n+1 qubit unitary U_{ψ} : $\begin{cases} |\psi\rangle|b\rangle \rightarrow |\psi\rangle|b\oplus 1\rangle \\ |\phi\rangle|b\rangle \rightarrow |\phi\rangle|b\rangle if \langle \psi|\phi\rangle = 0 \end{cases}$
- Problem: "Identity checking": Given quantum oracle access to unitary U, promised either U=U $_{\psi}$ or U=Id. Which is the case?
- Identity checking is in $QMA^{\{U_n\}}$
 - Quantum witness is the state $|\psi\rangle$
- Not in **QCMA** $\{U_n\}$
 - Proof by "Geometrical" lemma
 - *Intuition*: Polynomial classical bits are not enough to describe $|\psi\rangle$

What (else) are quantum proofs good for?

• First attempt to separate **QMA** from **QCMA** relative to standard oracle (*that doesn't work*)

- Consider the following problem (and let N=2ⁿ):
 - Given standard oracle access to $f:\{0,1\}^n \rightarrow \{0,1\}$ and promised either:
 - "Yes case": f has exactly \sqrt{N} inputs that map to 1
 - "No case": f has at most $0.9\sqrt{N}$ inputs that map to 1
 - Which is the case?
 - First off: problem shouldn't be in **QCMA**
 - Intuition is clear: subset of inputs that map to one is unstructured and exponential in size
 - This can be formalized using e.g., quantum polynomial method
 - But is it in QMA?
 - Attempt: Ask Merlin to give you state uniformly supported on a subset $S \subseteq \{0,1\}^n$ of size exactly \sqrt{N}
 - i.e., honest Merlin sends $\frac{1}{4/N} \sum_{x \in S} |x\rangle$
 - Now Arthur queries f in an output register:
 - $\frac{1}{\sqrt[4]{N}}\sum_{x\in S}|x\rangle|0\rangle \rightarrow \frac{1}{\sqrt[4]{N}}\sum_{x\in S}|x\rangle|f(x)\rangle$
 - Measures output register and accepts iff he obtains 1
 - Notice if we could only be *certain* that Merlin sent us state uniformly supported on *exactly* \sqrt{N} inputs, we'd be done
 - Note that in that "No case" the probability we accept is at most 0.9
 - But verifying that Merlin really sent this state seems extremely hard...

Our result: In-place oracle separation

- $\exists \{\mathsf{P}_{\sigma}\} \mathsf{QMA}^{\{P_{\sigma}\}} \not\subset \mathsf{QCMA}^{\{P_{\sigma}\}}$
- Intuition:
 - $\sigma:[N^2] \rightarrow [N^2]$, N=2ⁿ
 - Inverting σ has exponential query complexity in standard oracle model
 - Suppose we could find a decision problem in which to decide "yes" from "no" requires preparing $\frac{1}{\sqrt{N}}\sum_{i\in[N]}|\sigma^{-1}(i)\rangle$
 - This problem would be in $QMA^{\{P_{\sigma}\}}$
 - Merlin sends $\frac{1}{\sqrt{N}} \sum_{i \in [N]} |\sigma^{-1}(i)\rangle$
 - Protocol is sound! Merlin can't cheat
 - Arthur applies P_{σ} and checks that the resulting state is $\frac{1}{\sqrt{N}}\sum_{i \in [N]} |i\rangle$
 - This problem should not be in $QCMA^{\{P_{\sigma}\}}$
 - Preparing this state seems similar to permutation inversion
 - The polynomial length classical witness shouldn't help much...

Our (In-place) oracle problem

- *Definitions*: with respect to $\sigma:[N^2] \rightarrow [N^2]$
 - Define $S(\sigma)=\{j: \sigma(j) \in [N]\}$
 - Call σ "Even" if S(σ) has 2/3 even elements (and also say S(σ) is "Even Preimage")
 - Call σ "Odd" if S(σ) has 2/3 odd elements (and also say S(σ) is "Odd Preimage")
- "Preimage checking": Given in-place oracle access to P_{σ}
 - "Yes case": σ is "Even"
 - "No case": σ is "Odd"
- Preimage Checking is in $\mathbf{QMA}^{P_{\sigma}}$
 - Honest Merlin sends $\frac{1}{\sqrt{N}}\sum_{i \in [N]} |\sigma^{-1}(i)\rangle$
 - With probability ½ Arthur measures Merlin's state, accepts if even
 - With probability 1/2 Arthur runs in-place oracle on Merlin's state
 - Note that if Merlin is honest Arthur is left with $\frac{1}{\sqrt{N}}\sum_{i \in [N]} |i\rangle$
 - Arthur can check this!

"Voc"		 "No"	
"Yes"			
$\sigma^{-1}(1)$	8	9	
$\sigma^{-1}(2)$	2	2	
$e'') \sigma^{-1}(3)$	1	1	
) $\sigma^{-1}(4)$	3	3	
$\sigma^{-1}(5)$	6	6	
$\sigma^{-1}(6)$	7	7	
$\sigma^{-1}(7)$	9	8	
$\sigma^{-1}(8)$	5	5	
$\sigma^{-1}(9)$	4	4	
	•	•	

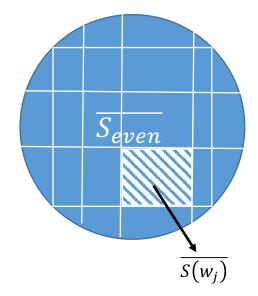
(example with N=3)

QCMA $\{P_{\sigma}\}$ lower bound: Proof overview

- (Rough) Goal: Find infinite set of permutations {P_{σ,n}}_{n≥1} and unary language L∈QMA^{{P_{σ,n}}} so that for any QCMA machine M, ∃ n M<sup>P_{σ,n}(1ⁿ)≠L(1ⁿ)
 </sup>
- Fix an enumeration of all **QCMA** machines M₀, M₁, M₂,...
- Will find, for each $\rm M_i$ some "Even" σ that cannot be distinguished by M from an "Odd" σ
- This suffices to obtain our goal

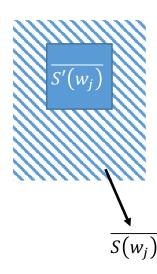
QCMA^{{ P_{σ} }} lower bound: Proof details (1)

- Step 1/3: "Witness conditioning"
 - Enumerate all quantum verifiers M₀, M₁, M₂,...
 - For each fixed machine M_i:
 - There's a mapping that takes each "Even" preimage ${\cal S}$ to the best polynomial length witness for that preimage
 - i.e., the witness that convinces \mathbf{M}_{i} to accept a permutation whose preimage is S with highest probability
 - Define $\overline{S_{even}} = \left\{ S \subset [N^2] \mid |S| = N, |S \cap \mathbb{Z}_{even}| = \frac{2}{3}N \right\}$
 - Define $\overline{S(w)} \subseteq \overline{S_{even}}$ to be the set of even preimages in which w is the witness that leads M_i to accept with highest probability
 - Note that the sets $\{\overline{S(w_0)}, \overline{S(w_1)}, ..., \overline{S(w_2p(n))}\}$ partition $\overline{S_{even}}$
 - Thus there must exist a w_i so that:
 - $|\overline{S(w_j)}| \ge \overline{|S_{even}|}/2^{p(n)}$
 - We will restrict ourselves to choosing an Even permutation with preimage in $S(w_i)$
 - This effectively "hardwires" this w_j into M_i (since each even permutation now corresponds to the same witness)
 - Reduced the problem to a in-place oracle query problem
 - Will prove there exists an even σ such that $S(\sigma) \in S(w_j)$ and still M_i requires exponential queries to decide if given in-place oracle access to σ or some "Odd" σ '



QCMA^{{ P_{σ} }} lower bound: Proof details (2)

- Step 2/3: "Fixing lemma":
 - Definition: $\overline{S} \subseteq \overline{S_{even}}$ is δ -distributed if:
 - There exists a set $S_{fixed} \subseteq [N^2]$ so that:
 - 1. S_{fixed} is a subset of every $S \in \overline{S}$
 - 2. $|S_{fixed} \cap \mathbb{Z}_{even}| \le \frac{1}{3}N \text{ and } |S_{fixed} \cap \mathbb{Z}_{odd}| \le \frac{1}{3}N$
 - 3. For every element $i \in [N^2]/S_{fixed}$, i appears in at most N^{δ} fraction of $S \in \overline{S}$
 - Goal: Output a set $\overline{S'(w_j)} \subseteq \overline{S(w_j)}$ that is β -distributed ($0 \le \beta \le 1$)
 - Procedure works by starting with $S(w_j)$
 - Until condition 3 above is satisfied:
 - a) Take the *i*' that is in more than N^{δ} fraction of sets and add it to S_{fixed}
 - b) Remove all sets that don't contain *i*'
 - Repeat steps a & b until condition 3 is satisfied
 - Note: counting argument shows that $S'(w_i)$ satisfies property 2.



QCMA^{{ P_{σ} }} lower bound: Proof details (3)

- Step 3/3: "Query lower bound theorem for permutations whose preimage form a fixed subset system"
- Theorem. Suppose $\overline{S} \subseteq \overline{S_{even}}$ is δ -distributed. Then there exists an "Even" permutation σ so that $S(\sigma) \in \overline{S}$ and an "Odd" permutation so that to tell them apart with bounded probability requires $\Omega(N^{\delta/2})$ in-place queries
- Proof: new "Adversary bound for in-place oracles"
 - Adaptation of Ambainis original result for standard oracles
 - Theorem: Let σ be some subset of permutations acting on [N²].
 - Suppose f: $\sigma \rightarrow \{0,1\}$, and let σ_{YES} be the set of permutations that f maps to 1, and σ_{NO} be the set of permutations that f maps to 0.
 - If $\exists R \subset \sigma_{YES} \times \sigma_{NO}$ so that:
 - 1. For every $\sigma_x \in \sigma_{YES}$ there exists at least m different $\sigma_y \in \sigma_{NO}$ so that $(\sigma_x, \sigma_y) \in R$
 - 2. For every $\sigma_y \in \sigma_{NO}$ there exists at least m' different $\sigma_x \in \sigma_{YES}$ so that $(\sigma_x, \sigma_y) \in R$
 - 3. Let $I_{x,i}$ =number of different $\sigma_y \in \sigma_{NO}$ so that $(\sigma_{x,r} \sigma_y) \in R$ and $\sigma_x(i) \neq \sigma_y(i)$
 - $\text{4.} \quad \text{Let } I_{y,i} = \text{number of different } \sigma_x \in \pmb{\sigma}_{\text{YES}} \text{ so that } (\sigma_{x,} \ \sigma_y) \in R \text{ and } \sigma_x(i) \neq \sigma_y(i)$
 - 5. $I_{max} = max_{(\sigma x, \sigma y)} \in R I_{x,i}I_{y,l}$

Then, given an in-place oracle P_{σ} any quantum algorithm that correctly evaluates f on all inputs with constant probability requires at least

 $\Omega \sqrt{\frac{mm'}{I_{max}}}$ in place queries to compute f(σ)

• We'll use the δ -distributed property of the subset system to show an "R" relation so that the function f, which evaluates to 1 on "Even" σ so that $S(\sigma) \in \overline{S}$ and evaluates to 0 on "Odd" σ requires an exponential number of queries to compute.

A few open questions about QMA

- QMA¢QCMA relative to a standard oracle?
 - Can this construction be extended?
- Unrelativized separations?
 - Seems to require new insights on entanglement structure of ground states of local Hamiltonians
- QMA vs QMA(2)
 - In QMA(2) Arthur receives tensor product of two pure quantum states on polynomial qubits
 - $QMA \subseteq QMA(2)$ is trivial, but is $QMA(2) \subseteq QMA$?
 - Closely connected to "separability testing" and "quantum de Finetti theorems"

Thanks!