On Quantum Obfuscation

Bill Fefferman (QuICS, University of Maryland/NIST) Joint with Gorjan Alagic (QMATH, University of Copenhagen)

Based on arxiv:1602.01771

Overview

- 1. Definitions
- 2. Applications
- 3. Feasibility?

I. Definitions

- A classical *Black-box* Obfuscator is an algorithm **O**:
 - Input is a circuit C with input length n
 - Outputs a circuit **O**(**C**) so that:
 - 1. "Functionality" of O(C) is the same as C
 - C(x)= O(C)(x) for all inputs x
 - 2. "Efficiency" is preserved
 - size(**O**(**C**)) ≤ *poly(n)*
 - 3. "Black-box Obfuscation" property
 - "Anything that can be efficiently learned about O(C) can just as well be learned from black-box access to C"
 - For any "adversary algorithm" A there exists "simulator algorithm" S so that for all circuits C:
 - |Pr[A(O(C))=1]-Pr[S^C(1^{size(C)})=1]|< negl(size(C))
- What should this mean *quantumly*?
 - The *input circuit*, the *Adversary*, the *Simulator*, and the *Obfuscator* itself should be quantum algorithms
 - The output of the obfuscation, **O**(**C**) will be a poly(n) qubit quantum state
 - That gains functionality through an "interpreter" algorithm J
 - I.e, all input states σ, |J(O(C), σ)-CσC[†]|_{tr}<negl(n)

II. Informal Sketches of Applications

- Transforming Private-key encryption scheme into Public-key encryption scheme
 - *Idea*: Publish the obfuscation of the private key Encryption algorithm, Enc_k
 - Everyone can encrypt!
 - Only secret key holder decrypts
- Fully homomorphic encryption
 - *Idea*: Suppose we want to perform some computation on encryptions of two bits
 - Take some public-key encryption scheme, use secret key to construct algorithm that performs the computation
 - By decrypting, applying operation, encrypting outcome
 - Publish the obfuscation of this algorithm along with public key
- Public-key quantum money
 - Goal:
 - A mint "produces" bills in the form of quantum states
 - Everyone can verify authenticity
 - No-one can copy (using no-cloning theorem)

III. Feasibility of obfuscation?

Classical Black-box Impossibility proof (1/3)

- *Theorem [Barak et. al., '01]*: There exist circuits that cannot be Black-box obfuscated.
- Barak et. al., constructs a circuit from which an adversary given O(C) gains more information than a simulator could using black-box access to C

• Proof idea:

- Choose $a,b \in_{R} \{0,1\}^{n}$
- Consider two pairs of circuits:
- 1. First pair:

$$C_{a,b}(x) = \begin{cases} b & \text{if } x = a \\ 0^n & \text{otherwise.} \end{cases}$$

2. Second pair:

$$Z(x) = 0^n$$
 for all x .

$$D_{a,b}(\mathcal{C}) = \begin{cases} 1 & \text{if } \mathcal{C}(a) = b \\ 0 & \text{otherwise.} \end{cases}$$
$$D_{a,b}(\mathcal{C}) = \begin{cases} 1 & \text{if } \mathcal{C}(a) = b \\ 0 & \text{otherwise.} \end{cases}$$

- Key Point:
 - Can efficiently distinguish inputs $O(C_{a,b})$ and $O(D_{a,b})$ from inputs O(Z) and $O(D_{a,b})$
 - Run them on each other!
 - But any simulator with black-box access to either pair (who is ignorant of a,b) can't do this!

Classical Black-box Impossibility proof (2/3)

- How to go from pairs of circuits to single circuits?
- Create "combined circuits" that use an additional input bit
 - $F_{a,b}$ is combination of $C_{a,b}$ and $D_{a,b}$
 - $G_{a,b}$ is combination of Z and $D_{a,b}$
- An adversary given as input either O(F_{a,b}) or O(G_{a,b}) can tell them apart
 - Make a copy of the obfuscation and use this copy to run the obfuscation on itself
- But this doesn't actually work!
 - Can't run a circuit on itself! The input register of is fixed length and not large enough
 - Fixing this requires most of the technical work in the [Barak et. al. '01] proof!

Classical impossibility proof (3/3)

- *Goal*: need to modify D_{a,b} so that:
 - Adversary can use it to test if given circuit C takes a to b
 - Needs to work even if description of C is longer than input length of $D_{a,b}$
 - Should keep a and b hidden from parties with only black-box access to $\mathsf{D}_{\mathsf{a},\mathsf{b}}$
- *Solution*: Construct a new D'_{a,b} that combines three circuits:
 - First circuit outputs encryption of a
 - Second circuit provides ability perform binary gates on encrypted bits
 - Third circuit tests whether a sequence of encryptions consists of the encryptions of the bits of b
- Why does this work?
 - If given **O**(**C**), we can test if **C**(a)=b using three new circuits
 - By using the second circuit to homomorphically apply each gate of C to the encryption of a
 - If we only have black-box access to $D'_{a,b}$, cannot learn a and b
 - Follows from *IND-CCA1* security of encryption scheme (which can be constructed from a OWF)
- Shows OWF⇒Black-box obfuscation is impossible
- Can also prove that Efficient Black-box obfuscation \Rightarrow OWF (contradiction!)

Adapting to the quantum setting

- *First case*: The quantum obfuscation has classical outputs
 - Not hard to make "unitary versions" of Barak's circuits F_{a,b} and G_{a,b}
 - Run into the same problem as before: how does adversary distinguish the quantum circuit $O(F_{a,b})$ from the quantum circuit $O(G_{a,b})$?
 - Similar solution: construct a modified *quantum* circuit that "homomorphically" runs a given *quantum* circuit on encryption of a and checks if the output is an encryption of b!
 - Needs a construction of IND-CCA1 private key encryption on quantum states (because our simulated quantum computation at any time is in some quantum state)!
 - For other computational notions of encryption on quantum plaintext see our paper "Computational Security of Quantum Encryption" [F., with Alagic, Broadbent, Gagliardoni, Schaffner, St. Jules] Also at this QCrypt!

• **Second case**: What happens if the obfuscator outputs quantum states?

- Here the no-cloning theorem forbids us from copying obfuscation state
- In the case that the output of the obfuscation is "reusable" can still achieve impossibility

Statistical indistinguishability obfuscation?

- Statistical i.o property: for functional equivalent C_1, C_2 the obfuscations $\rho_1 = O(C_1)$ and $\rho_2 = O(C_2)$ are negligible in trace distance.
- Impossibility of *quantum* statistical I.O (unless **QSZK=PSPACE**)
 - Two problems:
 - 1. "Quantum circuit distinguishability": Given two quantum C_0 and C_1 are they functionally similar (i.e., in diamond norm)?
 - This is **PSPACE**-complete [Rosen and Watrous '05]
 - 2. "Quantum state distinguishability" Given two efficiently preparable quantum states ρ_0 and ρ_1 are they close in trace norm?
 - This is QSZK-complete [Watrous'02]
 - Suppose we have efficient quantum statistical I.O algorithm O
 - Given instance of Quantum Circuit Distinguishability, C₀ and C₁
 - Consider obfuscations O(C₀) and O(C₁)
 - If C₀ and C₁ are functionally the same then O(C₀) is close to O(C₁) in trace norm (by obfuscation property of O)
 - If C₀ and C₁ are functionally different then can show that O(C₀) is far in trace norm from O(C₁) (using functional equivalence of obfuscation!)

Surviving notions of quantum obfuscation

- 1. Quantum black-box obfuscation with *uncloneable* output
 - Many of our applications survive!
- 2. Quantum Computational Indistinguishability Obfuscation
 - i.e., if C₁ and C₂ are functionally equivalent then O(C₁) and O(C₂) are computationally indistinguishable (using definition of [Watrous'08])
 - Application: Quantum "Witness Encryption" for QMA
 - Classically the existence of "Witness Encryption" for NP would have many useful applications [Garg, Gentry, Sahai and Waters'13]
 - E.g., Public key encryption from PRGs, Identity-based Encryption, Attribute-based Encryption etc...
 - Classically, there are candidate indistinguishability obfuscation constructions e.g., [Garg, Gentry, Halevi, Raykova, Sahai, Waters '13]. Can we find quantum I.O constructions?

Thanks!