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I.	Definitions
• A	classical	Black-box	Obfuscator	is	an	algorithm	O:

• Input	is	a	circuit	C	with	input	length	n
• Outputs	a	circuit	O(C)	so	that:

1. “Functionality” of	O(C)	is	the	same	as	C
• C(x)=	O(C)(x)	for	all	inputs	x

2. “Efficiency” is	preserved
• size(O(C)) ≤ poly(n)

3. “Black-box	Obfuscation” property
• “Anything	that	can	be	efficiently	learned	about	O(C)	can just	as well be learned from black-box	access to C“

• For	any	“adversary	algorithm”	A there	exists	“simulator	algorithm”	S so	that	for	all	circuits	C:
• |Pr[A(O(C))=1]-Pr[SC(1size(C))=1]|<	negl(size(C))

• What	should	this	mean	quantumly?
• The	input	circuit,	the	Adversary,	the	Simulator,	and	the	Obfuscator itself	should	be	quantum	
algorithms

• The	output	of	the	obfuscation,	O(C) will	be	a	poly(n) qubit	quantum	state
• That	gains	functionality	through	an	“interpreter”	algorithm	J

• I.e,	all	input	states	σ, |J(O(C),	σ)-CσC†|tr<negl(n)
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II.	Informal	Sketches of	Applications
• Transforming	Private-key	encryption	scheme	into	Public-key	encryption	
scheme
• Idea:	Publish	the	obfuscation	of	the	private	key	Encryption	algorithm,	Enck

• Everyone	can	encrypt!
• Only	secret	key	holder	decrypts

• Fully	homomorphic	encryption	
• Idea:	Suppose	we	want	to	perform	some	computation	on	encryptions	of	two	bits

• Take	some	public-key	encryption	scheme,	use	secret	key	to	construct	algorithm	that	
performs	the	computation
• By	decrypting,	applying	operation,	encrypting	outcome

• Publish	the	obfuscation	of	this	algorithm	along	with	public	key

• Public-key	quantum	money
• Goal:	

• A	mint	“produces”	bills	in	the	form	of	quantum	states
• Everyone	can	verify	authenticity
• No-one	can	copy	(using	no-cloning	theorem)
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III.	Feasibility	of	obfuscation?
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Classical	Black-box	Impossibility	proof	(1/3)
• Theorem	[Barak	et.	al.,	’01]:	There	exist	circuits	that	cannot	be	Black-box	
obfuscated.
• Barak	et.	al.,	constructs	a	circuit	from	which	an	adversary	given	O(C)	gains	
more	information	than	a	simulator	could	using	black-box	access	to	C
• Proof	idea:	

• Choose	a,b∈R {0,1}n
• Consider	two	pairs	of	circuits:
1. First	pair:

2. Second	pair:

• Key	Point:
• Can	efficiently	distinguish	inputs	O(Ca,b) andO(Da,b)	from	inputs	O(Z)	and	O(Da,b)

• Run	them	on	each	other!	
• But	any	simulator	with	black-box	access	to	either	pair	(who	is	ignorant	of	a,b)	can’t	do	this!
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Ca,b(x) =

(
b if x = a

0

n
otherwise.

Da,b(C) =
(
1 if C(a) = b

0 otherwise.

Z(x) = 0

n
for all x.

Da,b(C) =
(
1 if C(a) = b

0 otherwise.



Classical	Black-box	Impossibility	proof	(2/3)
• How	to	go	from	pairs	of	circuits	to	single	circuits?
• Create	“combined	circuits”	that	use	an	additional	input	bit

• Fa,b is	combination	of	Ca,b and	Da,b
• Ga,b is	combination	of	Z and	Da,b

• An	adversary	given	as	input	either	O(Fa,b)	or	O(Ga,b)	can	tell	them	
apart
• Make	a	copy	of	the	obfuscation	and	use	this	copy	to	run	the	obfuscation	on	
itself

• But	this	doesn’t	actually	work!
• Can’t	run	a	circuit	on	itself!		The	input	register	of	is	fixed	length	and	not	large	
enough

• Fixing	this	requires	most	of	the	technical	work	in	the	[Barak	et.	al.	’01]	proof!
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Classical	impossibility	proof	(3/3)
• Goal:	need	to	modify	Da,b so	that:

• Adversary	can	use	it	to	test	if	given	circuit	C takes	a	to	b
• Needs	to	work	even	if	description	of	C is	longer	than	input	length	of	Da,b
• Should	keep	a and	b hidden	from	parties	with	only	black-box	access	to	Da,b

• Solution:	Construct	a	new	D’a,b that combines	three	circuits:
• First	circuit	outputs	encryption	of	a
• Second	circuit	provides	ability	perform	binary	gates	on	encrypted	bits
• Third	circuit	tests	whether	a	sequence	of	encryptions	consists	of	the	encryptions	of	the	bits	of	
b

• Why	does	this	work?
• If	given	O(C),	we	can	test	if	C(a)=b using	three	new	circuits

• By	using	the	second	circuit	to	homomorphically apply	each	gate	of	C to	the	encryption	of	a
• If	we	only	have	black-box	access	to	D’a,b,	cannot	learn	a and	b

• Follows	from	IND-CCA1	security	of	encryption	scheme	(which	can	be	constructed	from	a	OWF)

• Shows	OWF⇒Black-box obfuscation	is	impossible
• Can	also	prove	that	Efficient	Black-box	obfuscation⇒OWF (contradiction!)

QCrypt	2016



Adapting	to	the	quantum	setting
• First	case:	The	quantum	obfuscation	has	classical	outputs

• Not	hard	to	make	“unitary	versions”	of	Barak’s	circuits	Fa,b and	Ga,b

• Run	into	the	same	problem	as	before:	how	does	adversary	distinguish	the	quantum	
circuit	O(Fa,b) from	the	quantum	circuit	O(Ga,b)?

• Similar	solution:	construct	a	modified	quantum circuit	that	“homomorphically”	runs	a	given	quantum
circuit	on	encryption	of	a	and	checks	if	the	output	is	an	encryption	of	b!

• Needs	a	construction	of	IND-CCA1	private	key	encryption	on	quantum	states	(because	our	simulated	
quantum	computation	at	any	time	is	in	some	quantum	state)!

• For	other	computational	notions	of	encryption	on	quantum	plaintext	see	our	paper	
“Computational	Security	of	Quantum	Encryption”	[F.,	with	Alagic,	Broadbent,	Gagliardoni,	
Schaffner,	St.	Jules]	Also	at	this	QCrypt!

• Second	case:	What	happens	if	the	obfuscator	outputs	quantum	states?
• Here	the	no-cloning	theorem	forbids	us	from	copying	obfuscation	state
• In	the	case	that	the	output	of	the	obfuscation	is	“reusable”	can	still	achieve	
impossibility
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Statistical	indistinguishability	obfuscation?
• Statistical	i.o property:	for	functional	equivalent	C1,C2 the	obfuscations	
ρ1=O(C1)	and	ρ2=O(C2)	are	negligible	in	trace	distance.
• Impossibility	of	quantum statistical	I.O	(unless	QSZK=PSPACE)

• Two	problems:
1. “Quantum	circuit	distinguishability”:	Given	two	quantum	C0 and	C1 are	they	functionally	

similar	(i.e.,	in	diamond	norm)?		
• This	is		PSPACE-complete	[Rosen	and	Watrous ‘05]

2. “Quantum	state	distinguishability”	Given	two	efficiently	preparable quantum	states	ρ0 and
ρ1 are	they	close	in	trace	norm?		
• This	is	QSZK-complete	[Watrous’02]

• Suppose	we	have	efficient	quantum	statistical	I.O	algorithm	O	
• Given	instance	of	Quantum	Circuit	Distinguishability,	C0 and	C1
• Consider	obfuscations	O(C0)	and	O(C1)

• If	C0 and	C1	are	functionally	the	same	then	O(C0)	is	close	to	O(C1)	in	trace	norm	(by	obfuscation	
property	of	O)

• If	C0	and	C1 are	functionally	different	then	can	show	that	O(C0)	is	far	in	trace	norm	from	O(C1)	(using	functional	equivalence	of	obfuscation!)
• So	we’ve	reduced	Quantum	Circuit	Distinguishability	to	Quantum	State	Distinguishability	and	
PSPACE⊆QSZK
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Surviving	notions	of	quantum	obfuscation

1. Quantum	black-box	obfuscation	with	uncloneable output
• Many	of	our	applications	survive!

2. Quantum	Computational Indistinguishability	Obfuscation
• i.e.,	if	C1 and	C2 are	functionally	equivalent	then	O(C1)	and	O(C2)	are	
computationally	indistinguishable	(using	definition	of	[Watrous’08])

• Application:	Quantum	“Witness	Encryption”	for	QMA
• Classically	the	existence	of	“Witness	Encryption”	for	NP would	have	many	useful	
applications	[Garg,	Gentry,	Sahai and	Waters’13]
• E.g.,	Public	key	encryption	from	PRGs,	Identity-based	Encryption,	Attribute-based	Encryption	

etc…
• Classically,	there	are	candidate	indistinguishability	obfuscation	constructions	
e.g.,	[Garg,	Gentry,	Halevi,	Raykova,	Sahai,	Waters	‘13].		Can	we	find	quantum	
I.O	constructions?
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Thanks!

QCrypt	2016


