Pseudorandom Generators and the BQP vs PH Problem

Bill Fefferman (Caltech)

Joint with Chris Umans

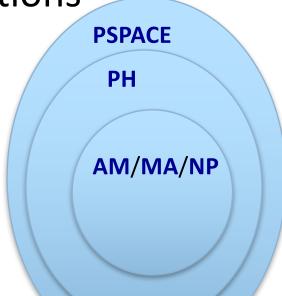
How (classically) powerful are quantum computers?

- BQP Class of languages that can be decided efficiently by a quantum computer
- Where is BQP relative to NP?
 - Is there a problem that can be solved with a quantum computer that can't be verified classically (BQP ⊄ NP?)
 - Can we give evidence?
 - Oracle separations

Is BQP ⊄ PH?

History: Towards stronger oracle separations

- [Bernstein & Vazirani '93]
 - Recursive Fourier Sampling?
- [Aaronson '09]
 - Conjecture: "Fourier Checking" not in PH
 - Assuming GLN
- [Aaronson '10] (counterexample!)
 - GLN false (depth 3)
- Why is it so hard?
 - Cannot rely on crude arguments about low degree approximating polynomials (both classes have such approximations... see [RS '87], [Beals et al '01])

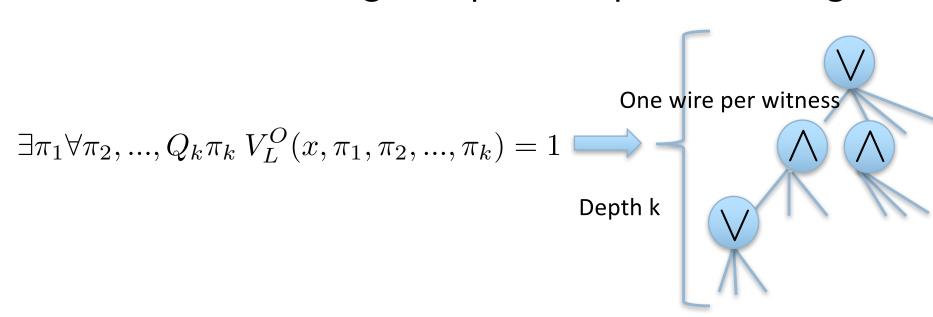


Today: A new approach

- Show oracle separation would follow from question studied in "pseudorandomness" literature [BSW '03]
- Under conjecture, quantum computers can break instantiation of the famous "Nisan-Wigderson" generator [NW '94]
- Unconditionally, gives another example of exponential quantum speedup over randomized classical computation

What can't PH^o do?

- Essentially equivalent to: what can't AC₀ do?
 - AC₀ is constant depth, AND-OR-NOT circuits of (polynomial size) and unbounded fanin
 - In circuit, ∃ becomes OR, ∀ becomes AND and oracle string an input of exponential length



Equivalent Setup

- want a function $f:\{0,1\}^N \mapsto \{0,1\}$
 - in **BQLOGTIME**
 - O(log N) quantum steps
 - random access to N-bit input: |i⟩ |z⟩ → |i⟩ |z ⊕ f(i)
 - accept with high probability iff f(input) = 1
 - but not in AC₀

Equivalent Setup

- More general (and transformable to previous setting):
 - two distributions on N bit strings D₁, D₂
 - BQLOGTIME algorithm that distinguishes them
 - proof that AC₀ cannot distinguish them
 - we will always take D₂ to be uniform

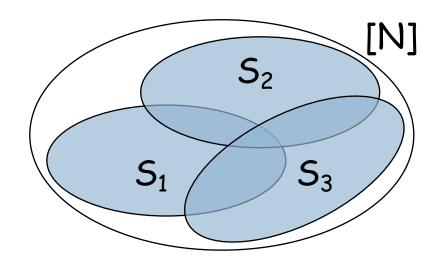
What can't AC₀ do?

- PARITY and MAJORITY not in AC₀ [FSS '84]
- AC₀ circuits can't distinguish:
 - 1. Bits distributed uniformly
 - 2. Bits drawn from "Nisan-Wigderson" distribution derived from:
 - 1. function hard (on average) for AC₀ to compute
 - 2. Nearly-disjoint "subset system"
 - Our result: There exists a specific choice of these subsets, for which the resulting distribution generated by the MAJORITY function can be distinguished (from uniform) quantumly!

Formal: Nisan-Wigderson PRG

S₁,S₂,...,S_M ⊂ [N] is an (N', p)-design if

- for all i, $|S_i| = N'$
- for all i ≠ j, $|S_i \cap S_j| \le p$



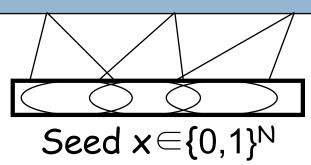
Nisan-Wigderson PRG

- f:{0,1}^{N'}→ {0,1} is a hard function (e.g., MAJORITY)
- S₁,...,S_M ⊂ [N] is an (N', p)-design

$$G(x)=x\circ f(x_{|S_1})\circ f(x_{|S_2})\circ \ldots \circ f(x_{|S_M})$$

truth table of f:

010100101111101010111001010



Proof of Classical Hardness: Indistinguishability

- Proof by contradiction:
 - assume circuit C distinguishes from uniform:

$$|Pr[C(U_{N+M}) = 1] - Pr[C(G(U_N)) = 1]| > \varepsilon$$

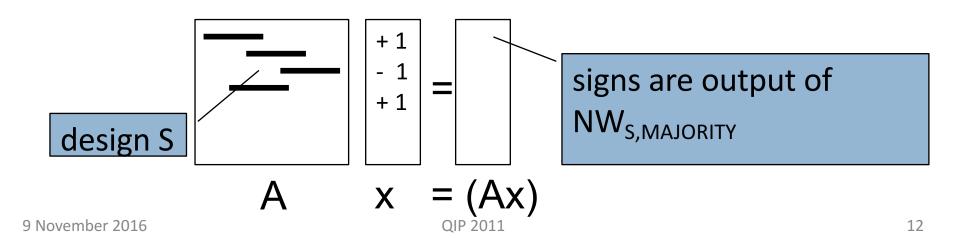
loss from hybrid argument!

- transform C into a *predictor* circuit P $Pr_{x\sim U}[P(G(x)_{1\cdots i-1}) = G(x)_{i}] > \frac{1}{2} + \epsilon/\mathbf{M}$
- derive similar sized circuit approximating hard function (using properties of subset system)
- Contradiction (assuming hard function cannot be approximated this well)

Distributions distinguishable from Uniform with a quantum computer

Note that properties (1-2) give us classical hardness, (3-4) quantum algorithm

- 1. Have large support
- 2. Have supports with small pairwise intersection (form some (N',p)-design)
- 3. Are pairwise orthogonal
- Should be an efficient quantum circuit (product of polylog(N) local unitaries)



Quantum Algorithm

- We claim there is a quantum algorithm to distinguish D_A from U_{2N}
- Quantum algorithm:
 - 1. enter uniform superposition over log N qubits
 - query x and multiply into phases: $\sum_{i} \mathbf{X}_{i} | i >$
 - apply A: $\sum_{i} (Ax)_{i} | i >$
 - query y and multiply into phases: $\sum_i y_i(Ax)_i$ | i>
 - measure in Hadamard basis, accept iff (0,0,...,0)
- Crucially, after step 4 we are back to all positive amplitudes in case oracle is D_A
- But in case oracle is U_{2N} with high prob. we have random mix of signs (low weight on |0....0> after final Hadamard)

 9 November 2016

QIP 2011

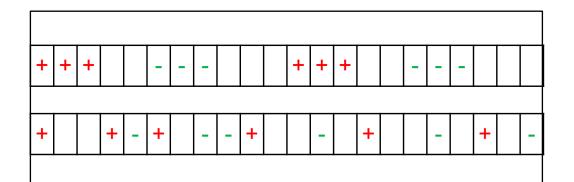
Constructing A using "Paired-Lines"

- Will describe N/2 pairwise-orthogonal vectors in $\{0,\pm 1\}^N$
- Identify N with the affine plane $\mathbb{F}_{\sqrt{N}} imes \mathbb{F}_{\sqrt{N}}$
- Let B_1, B_2 be an equipartition of $\mathbb{F}_{\sqrt{N}}$
- Take some $\phi: B_1 \to B_2$ (an arbitrary bijection). Then the vectors are:

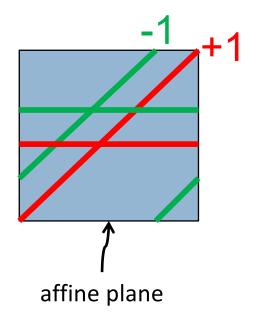
$$v_{a,b}[x,y] = \begin{cases} -1 & y = ax + b \\ +1 & y = ax + \phi(b) \\ 0 & otherwise \end{cases}$$

Construction

- Each row will be v_{a,b} (supported on two parallel, "paired-lines" with slope a)
- Identify columns with affine plane $\mathbb{F}_{\sqrt{N}} imes \mathbb{F}_{\sqrt{N}}$



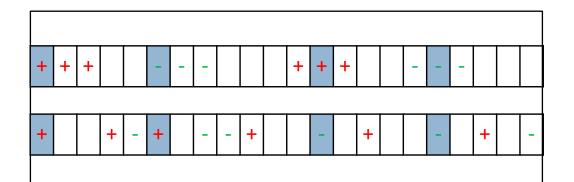
- \sqrt{N} parallel line classes
- \sqrt{N} lines in each class
- N/2 rows



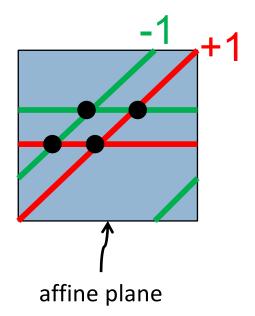
A

Construction

- Each row will be v_{a,b} (supported on two parallel, "paired-lines" with slope a)
- Identify columns with affine plane $\mathbb{F}_{\sqrt{N}} imes \mathbb{F}_{\sqrt{N}}$



Note that support of each row has at most 4 intersections with any other, and these contribute 0 to the inner product (and thus orthogonal)



A

Putting it all together

- "Technical Core": We construct an efficient quantum circuit realized by unitary whose (un-normalized) rows are vectors from a paired-lines construction wrt a specific bijection
 - $-N\times N$
 - Half of the rows will correspond to the paired-lines vectors
- Note that we have a quantum algorithm, as described before, that uses this unitary A to distinguish between D_A and U_{2N}
- But distinguishing should be hard for AC₀ since Ax is instantiation of NW generator!

But why aren't we finished?

- Distribution on (3/2)N bits that is the NW generator w.r.t. MAJORITY on N^{1/2} bits, with output length N/2
- Suppose AC₀ can distinguish from uniform with constant gap ε
 - proof: distinguisher to predictor, and then circuit for majority w/ success $\frac{1}{2} + \frac{\epsilon}{(N/2)}$
 - but already possible w/ success $\frac{1}{2}$ + $\Omega(1/N^{1/4})$... no contradiction

Our Conjecture

- Distribution on (3/2)N bits that is the NW generator w.r.t. MAJORITY on N^{1/2} bits, with output length N/2
- Can AC₀ can distinguish from uniform with constant gap ε?

Conjecture: No.

Recent new work [with Shaltiel, Umans & Viola]

- (Non-trivial) simplification of conjecture:
 - Take M completely disjoint subsets
 - Distinguish:
 - 1. All bits distributed uniformly
 - 2. First half bits are uniform, second are majorities over disjoint subsets of first half
 - This is indeed hard for AC₀!

Conclusions

- Assuming conjecture, gives a quantum algorithm that can "break" a PRG
- Unitaries used are novel and don't seem to resemble those used in other quantum algorithms
- Conjecture implies oracle relative to which BQP is not in PH