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How	(classically)	powerful	are	quantum	
computers?

• BQP – Class	of	languages	that	can	be	decided	
efficiently	by	a	quantum	computer	

• Where	is	BQP	relative	to	NP?
– Is	there	a	problem	that	can	be	solved	with	a	
quantum	computer	that	can’t	be	verified	
classically	(BQP ⊄ NP?)

– Can	we	give	evidence?
• Oracle	separations
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Is	BQP ⊄ PH?
• History:	Towards	stronger	oracle	separations

– [Bernstein	&	Vazirani ‘93]
• Recursive	Fourier	Sampling?

– [Aaronson	‘09]
• Conjecture:	“Fourier	Checking”	not	in	PH	

– Assuming	GLN
– [Aaronson	‘10]	(counterexample!)

• GLN	false	(depth	3)
• Why	is	it	so	hard?

– Cannot	rely	on	crude	arguments	about	low	degree	
approximating	polynomials	(both	classes	have	such	
approximations…	see	[RS	’87],	[Beals et	al	’01])

PSPACE

PH

AM/MA/NP
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Today:	A	new	approach

• Show	oracle	separation	would	follow	from	
question	studied	in	“pseudorandomness”	
literature	[BSW	’03]

• Under	conjecture,	quantum	computers	can	
break	instantiation	of	the	famous	“Nisan-
Wigderson” generator	[NW	’94]

• Unconditionally,	gives	another	example	of	
exponential	quantum	speedup	over	
randomized	classical	computation
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9�18�2, ..., Qk�k V O
L (x,�1,�2, ...,�k) = 1

What	can’t	PHO do?
• Essentially	equivalent	to:	what	can’t	AC0 do?

– AC0 is	constant	depth,	AND-OR-NOT	circuits	of	
(polynomial	size)	and	unbounded	fanin

– Idea:		In	circuit,	∃becomes	OR,	∀becomes	AND	
and	oracle	string	an	input	of	exponential	length

Depth	k

One	wire	per	witness
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Equivalent	Setup

• want a function f:{0,1}N! {0,1}
– in BQLOGTIME

• O(log N) quantum steps
• random access to N-bit input: |i〉|z〉! |i〉|z ⊕ f(i)
〉

• accept with high probability iff f(input) = 1

– but not in AC0
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Equivalent	Setup

• More general (and transformable to 
previous setting):
– two distributions on N bit strings D1, D2

– BQLOGTIME algorithm that distinguishes 
them

– proof that AC0 cannot distinguish them
– we will always take D2 to be uniform
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What	can’t	AC0do?

• PARITY	and	MAJORITY	not	in	AC0 [FSS	’84]
• AC0 circuits	can’t	distinguish:

1. Bits	distributed	uniformly
2. Bits	drawn	from	“Nisan-Wigderson”	distribution	

derived	from:
1. function	hard	(on	average)	for	AC0 to	compute
2. Nearly-disjoint	“subset	system”	

– Our	result:	There	exists	a	specific	choice	of	these	
subsets,	for	which	the	resulting	distribution	
generated	by	the	MAJORITY	function	can	be	
distinguished	(from	uniform)	quantumly!
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Formal:	Nisan-Wigderson PRG

• S1,S2,…,SM Ì [N] is an (N’, p)-design if

– for all i, |Si| = N’
– for all i ≠ j, |Si Ç Sj| ≤ p

[N]

S1

S2

S3
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Nisan-Wigderson PRG

• f:{0,1}N’→ {0,1} is a hard function (e.g., 
MAJORITY)

• S1,…,SM Ì [N] is an (N’, p)-design

G(x)=x◦f(x|S1)◦f(x|S2)◦…◦f(x|SM)
010100101111101010111001010truth table of f:

Seed x∈{0,1}N
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Proof	of	Classical	Hardness:	
Indistinguishability

• Proof by contradiction:
– assume circuit C distinguishes from uniform:

|Pr[C(UN+M) = 1] – Pr[C(G(UN)) = 1]| > ε

– transform C into a predictor circuit P            
Prx~U[P(G(x)1…i-1) = G(x)i]  > ½ + ε/M

– derive similar sized circuit approximating hard 
function (using properties of subset system) 

– Contradiction (assuming hard function cannot be 
approximated this well)

loss	from	hybrid	argument!
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Distributions	distinguishable	from	
Uniform	with	a	quantum	computer

DA	 =	(x,	y):	pick	x	uniformly from {1,	-1}N,	set	yi =	sgn((Ax)i)

=
+	1
- 1
+	1

signs	are	output	of	
NWS,MAJORITY

A
design	S

x = (Ax)

• Goal:	Matrix	A	with	rows	that
1. Have	large	support
2. Have	supports	with	small	pairwise	intersection	(form	some	

(N’,p)-design)
3. Are	pairwise	orthogonal
4. Should	be	an	efficient	quantum	circuit	(product	of	polylog(N)	

local	unitaries)
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quantum	algorithm



Quantum	Algorithm
• We claim there is a quantum algorithm to 

distinguish DA from U2N
• Quantum algorithm:

• Crucially, after step 4 we are back to all positive 
amplitudes in case oracle is DA

• But in case oracle is U2N with high prob. we have 
random mix of signs (low weight on |0….0> after 
final Hadamard)

1. enter	uniform	superposition	over	log	N	qubits
2. query	x	and	multiply	into	phases:	 ∑i xi |i>
3. apply	A:	 ∑i (Ax)i |i>
4. query	y	and	multiply	into	phases:	 ∑i yi(Ax)i |i>
5. measure	in	Hadamard basis,	accept	iff (0,0,…,0)
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Constructing	A	using	“Paired-Lines”
• Will	describe												pairwise-orthogonal	
vectors	in	

• Identify								with	the	affine	plane
• Let															be	an	equipartition of			
• Take	some																											(an	arbitrary	
bijection).		Then	the	vectors	are:

� : B1 ! B2

B1, B2
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{0,±1}N

N

Fp
N

Fp
N ⇥ Fp

N

va,b[x, y] =

8
<

:

�1 y = ax+ b
+1 y = ax+ �(b)
0 otherwise



Construction
• Each row will be va,b (supported on two 

parallel, “paired-lines” with slope a)
• Identify columns with affine plane 
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• parallel line classes
• lines in each class
• rows

A
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+1-1

affine	plane

• N parallel line classes
• N lines in each class
• N2/2 rows

A

Note that support of each row has at 
most 4 intersections with any other, 
and these contribute 0 to the inner 
product (and thus orthogonal)
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Construction
• Each row will be va,b (supported on two 

parallel, “paired-lines” with slope a)
• Identify columns with affine plane Fp

N ⇥ Fp
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Putting	it	all	together
• “Technical	Core”:		We	construct	an	efficient	quantum	
circuit	realized	by	unitary	whose	(un-normalized)	rows	
are	vectors	from	a	paired-lines	construction	wrt a	
specific	bijection
– N	x	N
– Half	of	the	rows	will	correspond	to	the	paired-lines	vectors

• Note	that	we	have	a	quantum	algorithm,	as	described	
before,	that	uses	this	unitary	A	to	distinguish	between	
DA and	U2N

• But	distinguishing	should	be	hard	for	AC0 since	Ax	is	
instantiation	of	NW	generator!
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But	why	aren’t	we	finished?

• Distribution on (3/2)N bits that is the NW 
generator w.r.t. MAJORITY on N1/2 bits, 
with output length N/2 

• Suppose AC0 can distinguish from uniform 
with constant gap ε
– proof: distinguisher to predictor, and then  

circuit for majority w/ success ½ + ε/(N/2)
– but already possible w/ success ½ + W(1/N1/4)

… no contradiction 
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Our	Conjecture

• Distribution on (3/2)N bits that is the NW 
generator w.r.t. MAJORITY on N1/2 bits, 
with output length N/2 

• Can AC0 can distinguish from uniform with 
constant gap ε?

Conjecture: No.
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Recent	new	work	[with	Shaltiel,	
Umans &	Viola]

• (Non-trivial) simplification of conjecture:
– Take M completely disjoint subsets
– Distinguish:

1. All bits distributed uniformly
2. First half bits are uniform, second are majorities 

over disjoint subsets of first half
– This is indeed hard for AC0!
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Conclusions

• Assuming	conjecture,	gives	a	quantum	
algorithm	that	can	“break”	a	PRG

• Unitaries used	are	novel	and	don’t	seem	to	
resemble	those	used	in	other	quantum	
algorithms

• Conjecture	implies	oracle	relative	to	which	
BQP is	not	in	PH
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