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|. BasiIcs



.1 Classical Complexity Theory

P
* Class of problems efficiently solved on classical computer

* NP

* Class of problems with efficiently
verifiable solutions

* Characterized by 3SAT
* Input: W:{0,1}">{0,1}

* n-variable 3-CNF formula
* Eg, (VX VX)) A(x; V=XV Xg) A. ..

* Problem: 3xy,%,,...,X, so that W(x)=17

e Could use a box solving 3SAT to solve any problem in NP




1.2 Merlin-Arthur

* “Randomized generalization” of NP

* Can think of a game between all-knowing but
potentially dishonest Merlin trying to prove
statement to efficient randomized classical
computer (Arthur)

e If statement is true, there exists a polynomial
Ienﬁth classical bltstrlng or “witness” to convince
Arthur to accept with high probability

(Completeness)

* If statement is false, then every “witness” is
rejected by Arthur with high probability
(Soundness)

* Under commonly believed derandomization
hypothesis MA=NP




1.3 Quantum Merlin-Arthur

* QMA: Same setup, now Arthur is BQP machine,

A
\ 4
<O-
witness is polynomial qubit quantum state ’ ‘

* Formally: QMA,, is the class of promise problems L=(L,,L,o)
so that:
* There exists a uniform verifier {V; },¢(o 1)» of polynomial size that acts
on O(m(|x]|)+k(|x|)) qubits (for k& poly(n)):
€ Lyes = 3|¢) ((¥] @ (0°]) VI 1) (Loue Ve (J90) © 0%)) > 2/3
€ Lo = VIv) (] @ (0%]) V1) (Loue Ve (I9) @ 10%)) < 1/3

e “Quantum analogue” of NP

* k-Local Hamiltonian problem is QMA-complete (when k>2) [Kitaev '02]
e Input: H = Y| H;, each term H,; is k-local
* Promise, for (a,b) so that b-a>1/poly(n), either:
« J|Y) so that (Y|H|PY) <a OR
« V|{)we have (p|H|P) =b




.4 Entangled quantum states

* Let A and B be two finite dimensional complex vector spaces

* A bipartite density matrix, or state, is a positive semidefinite matrix
Pag ON A®B that has unit trace

* pagis called separable if it can be written as PAB = ZPkﬂA,k ® PB,k
* For local states {p, \} and {pg } and probabilities p; k

* States that are not separable are entangled



1.5 QMA(2): The power of separable witness

e Our question: Is there an advantage to Merlin sending unentangled
states?
« QMA(2):

* Completeness: There exist state [1)1) ® |1)2) that convinces Arthur to accept with high
probability

* Soundness: All states ]¢1> @ |¢2> are rejected by Arthur with high probability
* QMA(k): Same class with k witnesses

* Trivial bounds: QMAS QMA(2)& NEXP

* Why isn’t QMA(2) obviously contained in QMA?
* Merlin can cheat by entangling, and checking separability is hard
* E.g., “Weak-membership(c)” is NP-hard [e.g., Gharibian’09]
* Given p,gis it separable or |pag-Sep|>€ ?
* Where e=1/poly(|Al,|B|) relative to the trace norm

* Error ampilification is non-trivial

* Repetition doesn’t work (Measurements on one set of copies can create entanglement
between witnesses)



1.6 Why should you care about QMA(2)?

* There are many multi-prover quantum complexity classes, why should
we care about this one?

1. Connections to separability testing (i.e., given a quantum state is it
separable or far from separable?)

2. Connections to entanglement measures and “guantum de Finetti
theorems”

3. Close connections to hardness of approximation and classical
complexity theory: “Unique Games Conjecture” and the
“Exponential Time Hypothesis”



|.7 Classes of bipartite measurement operators e.g., HM’12

* There’s an interesting line of work attempting to understand QMA(2)
with restricted verification protocols

 We say a POVM (M,I-M) is in:

* BELL : “systems are measured locally with no conditioning” M = ) = o; ® 8;
« Where 2= and Zﬁi:I (i,5)€S
* Sisset ofzpairs of outcomes (indices)
* i.e., systems are measured locally get outcome (i,j) and accept iff (i,j) =S

* 1LOCC: “choose measurement on system B conditioned on outcome
of measurement on system A” M=} aieM,
* Where Y a;=I1 and 0<M; <I foreach M,

 Can be generalized to LOCC by allowing for finite number of rounds of
alternating measurements on the two subsystems

* SEP is the class of measurements M so that M = Za ® B
* For positive semidefinite matrices {o;} and {B;} '

 Notice that BELLE LOCC1< LOCCESEPC ALL



Il. Results on QMA(2)



I1.1. SAT protocol: Aaronson, Beigi, Drucker, F., Shor ‘09

* Conjecture 1: 3SAT, cannot be solved in classical poly(n) time
* Equivalent to NP{P

* Conjecture 2: 3SAT, cannot be solved in classical 2°" time
* “Exponential-time Hypothesis” [Impagliazzo & Paturi ‘99]
* Seems reasonable even quantumly — “Quantum ETH”

~

e Our result: 3SAT,, € QMA ., ,(O(v/n))

* i.e., sqrt(n) witnesses, each on log(n) qubits (*here n is number of clauses)
* Notice total number of witness qubits is o(n)
* Same result classically would show Exponential-time Hypothesis to be false

* Proof idea:
* SUppose Xq,Xy,...,X, =10,1}" is Merlin’s clalimed satisfying assignment
* Ask all Merlins to send the same state: ﬁ;(—l)mim
* Need many Merlins to check that he sent this state!



1.1 (part ii). Related QMA(2) protocols

* Related protocols:
* [Blier & Tapp '09] NP C QMA,,,,,(2,1,1~
* Via protocol for 3Coloring
* If soundness was constant then NEXPS QMA(2)
* [Chen & Drucker’10] 3SAT,, € QMAEE%L(O(\/H))
* Verifier uses local measurements

* Matches parameters of [ABDFS’09]
* Perfect completeness and constant soundness

1
poly(n)

)



11.2. “Product test”: Harrow & Montanaro '12

 For all k€poly(n) QMA(k)=QMA(2)
* Uses the “product test”
« Ask both Merlins to send [¥0) = |101) ® [12) ® |13) ® ... ® |W)

* Pr %: Arthur “swap tests” on each of the k pairs of corresponding subsystems and
accepts iff they all accept

* Swap test on states p and o accepts with probability 1/2+1/2 Tr[po]
* Pr %: Arthur runs verification protocol on one of the states

 Main result:
» Suppose we are given two coples of k-partite state’¢>

o Let 1 —e=_max {|(s[¢)]"}

p)eSep(k)
+ Then Product 2cest%ccepts with probability 1 — ©(e)

* In fact, QMA(k)=QMA>¢"(2)

* Because the “accept” measurement of product test is separable operator



1.2 (part ii). More consequences of [HM’12]

1. Improves the SAT protocol from before [ABDFS'09]

1. Resultasstated: SAT,, € QMA,,.,(O(/n))
2. Result together with [HM’12]: SAT € Q MA [)

3. Don’t know how to extend this to Chen & Drucker result

2. Hardness consequences for “s-Best Separable State” problem
* |nput: Hermitian matrix M on A®B
* Output: Estimate of hge,(M)=max;cs.,Tr[Mo] to within additive error €

* “Equivalent” in hardness to Weak Membership problem
* So this problem is NP-hard for e=1/poly(d)

* Notice that this problem is at least as hard as deciding a language in QMA(2)
 Therefore, SAT, can be cast as a BSS problem with |A|=|B|= 20(art(n)
* Gives subexponential bounds on the complexity of e-Best Separable State for constant €
* Suppose there’s an algorithm runs in time exp(O(log¥|A|log™V|B|) then ETH is false!
e-Best Separable State turns out to also be polynomial-time equivalent to many other problems
* Connections to Unique Games conjecture via “2-to-4 norm problem” (see [HM’12] for details)

3. IsQMA(2)© QMA?
* QMA (1)< BQTIME[O(2™)] [Marriott & Watrous ‘04]
* So, if QMAm(Z):QMAmz-v the Quantum ETH is false

4. QMA>¢P(2) characterization allows us to error amplify using repetition!



11.3. QMA(2) with 1LOCC measurements [BCY'11]

e “Quantum de Finetti” Theorem
* Definition: We say a bipartite state pug is k-extendible if:
* There exists a (k+1)-partite psp, ,...5, S0 that PAB — PAB; — PABy — -+ — PABy
Separable states are k-extendible for all k>0 [e.g., DPS’08]

[Christandl et. al ‘07] shows that k-extendible states are close to separable in a well-defined
sense:

4| B|?
lpas — Seplly < 22
* [BCY’11] shows much tighter relation for 1LOCC norm:
log |4

llpap — Sep||iLocc < k:

As a consequence, QMA ,'°¢¢(2)=QMA...(1)
* Proof idea: In QMA(1) protocol, Arthur asks Merlin to send k-extension of his bipartite witness

* Use de Finetti theorem for 1LOCC to bound soundness probability (i.e., the advantage Merlin gets from
entangling his states in case the answer is ‘No’)

* There’s an interesting line of work tryi gto improve this result in various ways
e.g., [Brandao & Harrow ‘11], [Lancien & Winter’16]



I1.4. Complete problem for QMA(2)
[Chailloux & Sattath "12]

* Recall: “k-local Hamiltonian problem” is QMA-complete

“Separable sparse Hamiltonian problem”

* Definition: An operator over n qubits is row-sparse if:
* Each row in A has at most poly(n) non-zero entries
* There’s classical algorithm that takes a row index and outputs the non-zero entries this row

* Input: Row-sparse Hamiltonian, H, on n qubits

* Promise: for (a,b) so that b-a>1/poly(n), either:
* JP) = [P)a  |b)p so that (Y|H|Y) <a OR
* V) = [U)a Q |Y)g we have (P|H|) = b

Proof uses “clock” construction of Kitaev and “Product test” of Harrow-Montanarc

In fact, same paper shows that Separable local Hamiltonian is QMA-complete
Starting point for recent attempt at proving QMA(2) upper bound [Schwarz’15]




I1l. Open questions/Preview of things to come



Ill. Open Questions

e Can we put a nontrivial upper bound on QMA(2)?

e Can Chen & Drucker’s 3SAT protocol with BELL measurements be
improved to use only 2 witnesses?

e Can the 1LOCC de Finetti theorem be extended to SEP?
measurements? This would imply QMA(2)& QMA(1)

« QMA(1)=QMA!°¢(2) ys QMASEP(2)=QMA (k)
* Other QMA(2)-complete problems?



IIl. Next time!

e Classical complexity of the e-Best Separable State problem

1. SDP hierarchies and its relation to BSS

* Give algorithms for (special cases) of BSS
e “Sum-of-Squares”

2. €-nets



