# The Power of Quantum Fourier Sampling

Bill Fefferman

QuICS, University of Maryland/NIST

Joint work with Chris Umans (Caltech)

Based on arxiv:1507.05592

# Classical Complexity Theory

#### • P

Class of problems efficiently solved on classical computer

#### NP

- Class of problems with efficiently checkable solutions
- Characterized by SAT
  - Input:  $\Psi:\{0,1\}^n \to \{0,1\}$ 
    - n-variable boolean formula

» E.g., 
$$(x_1 \lor x_2 \lor x_3) \land (x_1 \lor -x_2 \lor x_6) \land \dots$$

- Problem:  $\exists x_1, x_2, ..., x_n$  so that  $\Psi(x)=1$ ?
- SAT is NP-complete



## Beyond NP

#### Tautology

- •Input:  $\Psi:\{0,1\}^n \to \{0,1\}$
- $\forall x \Psi(x)=1$ ?
- Complete for coNP
- Don't believe that coNP=NP
- •Generalize **SAT** and **Tautology** by adding quantifiers:
  - •QSAT<sub>2</sub> is the version of the SAT problem with 2 quantifiers
  - •E.g.,  $\exists x_1x_2x_3...x_{n/2} \forall x_{n/2+1}x_{n/2+2},...,x_n$  so that  $\Psi(x)=1$ ?
  - •Consider problems QSAT<sub>3</sub>,QSAT<sub>4</sub>,QSAT<sub>5</sub>...QSAT<sub>n</sub>
  - •Conjectured to get strictly harder with increasing number of quantifiers (or else there's a *collapse*!)
- $\Sigma_k$  is class of problems solvable with a  $QSAT_k$  box
- PH is class of problems solvable with a QSAT<sub>O(1)</sub> box
- PSPACE is class of problems solvable with a QSAT<sub>n</sub> box



# Complexity of Counting

#### #SAT

- Input: Ψ: $\{0,1\}^n \rightarrow \{0,1\}$
- Problem: How many satisfying assignments to Ψ?
- #SAT is complete for #P
- PH⊆P<sup>#P</sup> [Toda'91]
- Permanent $[X] = \sum_{\sigma \in S_n} \prod_{i=1} X_{i,\sigma(i)}$  is **#P-hard**



# How powerful are quantum computers?

- BQP: The class of decision problems solvable by quantum computers in polynomial time
- Certainly P⊆BQP
- But why should BQP\(\psi\)P (or NP or PH)?
  - Shor's algorithm: Factoring ∈ BQP
    - But little reason to believe Factoring is not in
    - In fact, if Factoring is NP-hard then PH collapses
  - Oracle separations, see [e.g., Aaronson'10, F., Umans'11]
  - In short, not much is known!



### Separations from sampling problems

- Starting with [DT'02][BJS'10] we know that there are distributions that can be sampled quantumly that cannot be sampled exactly classically (unless PH collapse)
  - Quantumly: Efficiently prepare a quantum state on n qubits and measure in standard basis
    - Distribution is over measurement outcomes
  - Classically: No efficient classical randomized algorithm can sample from exactly the same distribution
- Our focus: "Approximate sampling" hardness result
  - Want a hardness result even if the classical sampler samples from distribution 1/poly(n) close in total variation distance from quantum distribution
  - Why are we interested in this?
    - "To model experimental error"
    - Other complexity separations would follow (i.e., fBQP⊄fBPP [Aaronson'10])

# Construction of quantumly sampleable distribution **D**<sub>PER</sub>

- Goal: efficiently prepare a quantum state in which each amplitude is proportional to the **Permanent** of a different matrix
- Sketch of procedure:
  - 1. Prepare the "permutation matrix state"
    - Quantum state on n<sup>2</sup> qubits uniformly supported only on those n! permutation matrices
  - 2. Apply a quantum Fourier transform  $H^{\bigotimes n^2}$ 
    - i.e., apply Hadamard on each of n<sup>2</sup> qubits
  - 3. Measure in standard basis to sample
  - Claim: Each amplitude is proportional to the Permanent of a different {±1}<sup>n x n</sup> matrix

# What's happening?

- Recall, Permanent(x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n^2</sub>) is a multilinear polynomial of degree n
- Our quantum sampling algorithm (omitting normalization):

All possible multilinear monomials over n^2 variables  $M_1,...M_{2^{n}}$   $M_1(X_1),M_2(X_1),...,M_{2^{n}}$   $M_2(X_1),...,M_{2^{n}}$   $M_2(X_1),...,M_{2^{n}}$   $M_1(X_1),M_2(X_1),...,M_{2^{n}}$   $M_2(X_1),...,M_{2^{n}}$   $M_2(X_1),...,M_{2^{n}}$   $M_1(X_2,X_1),...,M_2(X_1),...,M_2(X_1)$   $M_1(X_2,X_1),...,M_2(X_1),...,M_2(X_1)$   $M_2(X_1,X_2)$   $M_2(X_1,X_2$ 

This is supported on the monomials in the **Permanent** 

### Classical hardness sketch

- Recall:  $D_{PER}$  is a distribution over all  $\{\pm 1\}^{n \times n}$  matrices X with probabilities proportional to  $Permanent^2[X]$
- Assume there's a classical algorithm that samples from distribution close in total variation distance to  $\mathbf{D}_{PER}$
- Key tool: Stockmeyer's algorithm
  - Input: Classical sampler and an outcome
  - Output: A  $(1\pm\epsilon)$ -multiplicative estimate to the probability of this outcome in time  $poly(n,1/\epsilon)$  with an **NP** oracle
    - i.e., for  $\varepsilon=1/\text{poly}(n)$ , this is in  $BPP^{NP}\subseteq\Sigma_3$
- Our strategy: Chose a random  $\{\pm 1\}^{n \times n}$  matrix X and use Stockmeyer's algorithm to estimate outcome probability of X  $\approx$  Permanent<sup>2</sup>[X]
  - Since our sampler is approximate, can't trust it on any single outcome probability
  - Markov inequality: Most of the probabilities must be close to the true probabilities
  - So we end with a BPP<sup>NP</sup> algorithm for estimating the Permanent<sup>2</sup> of most matrices
- Is estimation task #P-hard? If so then  $P^{\#P} \subseteq BPP^{NP} \subseteq \Sigma_3$ 
  - But we know that  $PH \subseteq P^{\#P}$  by Toda's theorem
  - So PH⊆ $\Sigma_3$  (Collapse!)

# How hard is "Approximating" the Permanent?

- Our result: If there is an approximate sampler for D<sub>PER</sub> then there's a PH algorithm that "computes Permanent" with two caveats:
  - Only "works" with high probability (over choice of matrix)
  - 2. "Works" means obtains a multiplicative estimate
- We can show that either of these weaknesses alone would be #P-hard!
- Don't know how to prove #P-hardness for both of these weakness!
  - This is exactly the same reason other two "approximate" sampling results need conjectures [Aaronson and Arkhipov, Bremner, Montanaro and Shepherd]...

## Generalizing the argument

- Unlike the results of [Aaronson & Arkhipov '12] and [Bremner, Montanaro & Shepherd '16] we can generalize our argument to rely on alternative hardness conjectures
  - Can generalize the **Permanent** to any "efficiently specifiable polynomial"
  - Can generalize the entries of the matrices and the distribution over matrices (e.g., iid Gaussian instead of random sign matrix)
- If any of these conjectures are true, we show the desired "approximate sampling" separation

# Thanks!