The Power of Quantum Fourier Sampling

Bill Fefferman
QuICS, University of Maryland/NIST
Joint work with Chris Umans (Caltech)

Based on arxiv:1507.05592
Classical Complexity Theory

- **P**
 - Class of problems efficiently solved on classical computer

- **NP**
 - Class of problems with efficiently checkable solutions
 - Characterized by SAT
 - Input: \(\Psi: \{0,1\}^n \rightarrow \{0,1\} \)
 - n-variable boolean formula
 - E.g., \((x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_6) \land \ldots\)
 - Problem: \(\exists x_1,x_2,\ldots,x_n \) so that \(\Psi(x)=1? \)
 - SAT is **NP**-complete
Beyond **NP**

Tautology

- Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$
- $\forall x \Psi(x)=1$?
- Complete for **coNP**
- Don’t believe that **coNP**=**NP**

Generalize SAT and Tautology by adding quantifiers:

- \textbf{QSAT}_2 is the version of the SAT problem with 2 quantifiers
 - E.g., $\exists x_1 x_2 x_3 ... x_{n/2} \forall x_{n/2+1} x_{n/2+2} ... x_n$ so that $\Psi(x)=1$?
- Consider problems $\textbf{QSAT}_3, \textbf{QSAT}_4, \textbf{QSAT}_5 ... \textbf{QSAT}_n$
- Conjectured to get strictly harder with increasing number of quantifiers (or else there’s a collapse!)

- Σ_k is class of problems solvable with a \textbf{QSAT}_k box
- **PH** is class of problems solvable with a $\textbf{QSAT}_{O(1)}$ box
- **PSPACE** is class of problems solvable with a \textbf{QSAT}_n box
Complexity of Counting

- **#SAT**
 - Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$
 - Problem: How many satisfying assignments to Ψ?
- **#SAT** is complete for **#P**
- **PH** \subseteq **P**$^\#P$ [Toda’91]
- Permanent $[X] = \sum_{\sigma \in S_n} \prod_{i=1}^{n} X_{i,\sigma(i)}$ is **#P**-hard
How powerful are quantum computers?

- **BQP**: The class of *decision* problems solvable by quantum computers in polynomial time
- Certainly $P \subseteq BQP$
- But why should $BQP \nsubseteq P$ (or NP or PH)?
 - Shor’s algorithm: Factoring $\in BQP$
 - But little reason to believe Factoring is not in P
 - In fact, if Factoring is NP-hard then PH collapses
 - Oracle separations, see [e.g., Aaronson’10, F., Umans’11]
 - In short, not much is known!
Separations from sampling problems

• Starting with [DT’02][BJS’10] we know that there are distributions that can be sampled quantumly that cannot be sampled exactly classically (unless PH collapse)
 – Quantumly: Efficiently prepare a quantum state on n qubits and measure in standard basis
 • Distribution is over measurement outcomes
 – Classically: No efficient classical randomized algorithm can sample from exactly the same distribution

• Our focus: “Approximate sampling” hardness result
 – Want a hardness result even if the classical sampler samples from distribution $1/poly(n)$ close in total variation distance from quantum distribution
 – Why are we interested in this?
 • “To model experimental error”
 • Other complexity separations would follow (i.e., $fBQP \not\subset fBPP$ [Aaronson’10])
Construction of quantumly sampleable distribution D_{PER}

- **Goal**: efficiently prepare a quantum state in which each amplitude is proportional to the **Permanent** of a different matrix

- **Sketch of procedure**:
 1. Prepare the “permutation matrix state”
 - Quantum state on n^2 qubits uniformly supported only on those $n!$ permutation matrices
 2. Apply a quantum Fourier transform $H \otimes n^2$
 - i.e., apply Hadamard on each of n^2 qubits
 3. Measure in standard basis to sample

- **Claim**: Each amplitude is proportional to the **Permanent** of a different $\{\pm 1\}^{n \times n}$ matrix
What’s happening?

• Recall, \(\text{Permanent}(x_1, x_2, ..., x_{n^2}) \) is a multilinear polynomial of degree \(n \)

• Our quantum sampling algorithm (omitting normalization):

\[
\begin{bmatrix}
1 & 0 & 0 & ... & 0 \\
0 & 0 & 1 & 0 & 0 \\
... & ... & ... & ... & ...
\end{bmatrix}
\begin{align*}
H^{\otimes n^2} & \quad M_1(X_1), M_2(X_1), ..., M_{2^{n^2}}(X_1) \\
M_1(X_2^{(n^2)}), ..., M_{2^{n^2}}(X_2^{(n^2)}) & \quad \text{Per}[X_1] \\
& \quad \text{Per}[X_2] \\
& \quad \text{Per}[X_2^{(n^2)}]
\end{align*}
\]

This is supported on the monomials in the \textbf{Permanent}.
Classical hardness sketch

- **Recall**: D_{PER} is a distribution over all $\{\pm 1\}^{n \times n}$ matrices X with probabilities proportional to $\text{Permanent}^2[X]$
- Assume there’s a classical algorithm that samples from distribution close in total variation distance to D_{PER}
- **Key tool**: Stockmeyer’s algorithm
 - *Input*: Classical sampler and an outcome
 - *Output*: A $(1\pm\varepsilon)$-multiplicative estimate to the probability of this outcome in time $\text{poly}(n,1/\varepsilon)$ with an NP oracle
 - i.e., for $\varepsilon=1/\text{poly}(n)$, this is in $\text{BPP}^{\text{NP}} \subseteq \Sigma_3$
- **Our strategy**: Chose a random $\{\pm 1\}^{n \times n}$ matrix X and use Stockmeyer’s algorithm to estimate outcome probability of $X \approx \text{Permanent}^2[X]$
 - Since our sampler is approximate, can’t trust it on any single outcome probability
 - Markov inequality: Most of the probabilities must be close to the true probabilities
 - So we end with a BPP^{NP} algorithm for estimating the Permanent^2 of most matrices
- Is estimation task $\#P$-hard? If so then $\text{P}^{\#P} \subseteq \text{BPP}^{\text{NP}} \subseteq \Sigma_3$
 - But we know that $\text{PH} \subseteq \text{P}^{\#P}$ by Toda’s theorem
 - So $\text{PH} \subseteq \Sigma_3$ (Collapse!)
How hard is “Approximating” the Permanent?

• *Our result*: If there is an approximate sampler for D_{PER} then there’s a PH algorithm that “computes Permanent” with two *caveats*:
 1. Only “works” with high probability (over choice of matrix)
 2. “Works” means obtains a multiplicative estimate

• We can show that either of these weaknesses alone would be #P-hard!

• Don’t know how to prove #P-hardness for both of these weaknesses!
 – This is exactly the same reason other two “approximate” sampling results need conjectures [Aaronson and Arkhipov, Bremner, Montanaro and Shepherd]...
Generalizing the argument

• Unlike the results of [Aaronson & Arkhipov ’12] and [Bremner, Montanaro & Shepherd ’16] we can generalize our argument to rely on alternative hardness conjectures
 – Can generalize the **Permanent** to any “**efficiently specifiable** polynomial”
 – Can generalize the entries of the matrices and the distribution over matrices (e.g., iid Gaussian instead of random sign matrix)

• If any of these conjectures are true, we show the desired “approximate sampling” separation
Thanks!