The Power of Quantum Fourier Sampling

Bill Fefferman QuICS, University of Maryland/NIST Joint work with Chris Umans (Caltech)

Based on arxiv:1507.05592

I. Complexity Theory Basics

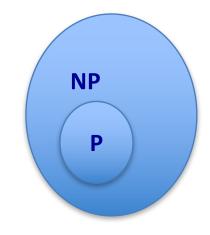
Classical Complexity Theory

• P

Class of problems efficiently solved on classical computer

• NP

- Class of problems with efficiently checkable solutions
- Characterized by SAT
 - Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$
 - n-variable boolean formula
 - » E.g., $(x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee x_2 \vee x_6) \wedge \dots$
 - Problem: $\exists x_1, x_2, ..., x_n$ so that $\Psi(x)=1$?
- Could use a box solving SAT to solve any problem in NP



Beyond NP

Tautology

- •Input: Ψ :{0,1}ⁿ \rightarrow {0,1}
- •∀xΨ(x)=1?

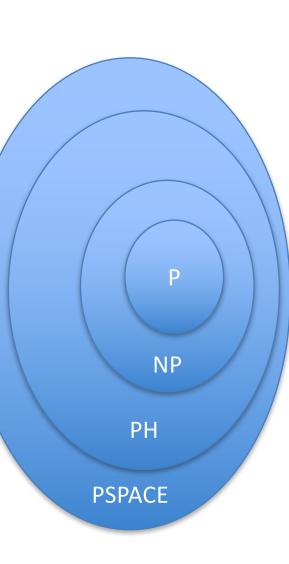
•Complete for **coNP**

•QSAT_k

•Generalizes SAT and Tautology

•Input: $\Psi: \{0,1\}^n \rightarrow \{0,1\}$ & partitioning $S_1, S_2, \dots, S_k \subseteq [n]$

- Problem: $\exists x_{s_1} \forall x_{s_2},...,Q_k x_{s_k}$ so that $\Psi(x)=1$?
 - Thought to be strictly harder with larger k's (or else there is a collapse)
- Σ_k is class of problems solvable with a $QSAT_k$ box
- **PH** is class of problems solvable with a **QSAT**_{O(1)} box
- **PSPACE** is class of problems solvable with a **QSAT**_n box

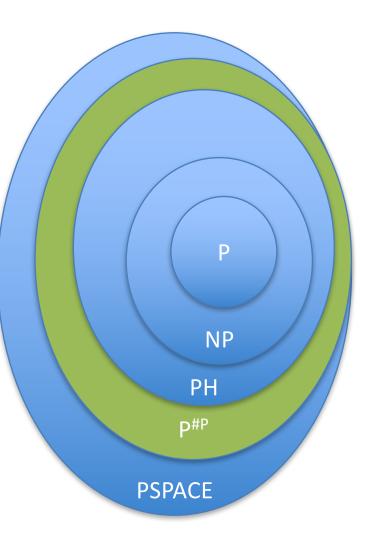


Complexity of Counting

• #SAT

− Input: Ψ :{0,1}ⁿ→{0,1}

- Problem: How many satisfying assignments to Ψ ?
- #SAT is complete for #P
- **PH**⊆**P**^{#P} [Toda'91]
- Permanent[X] = $\sum_{\sigma \in S_n} \prod_{i=1}^n X_{i,\sigma(i)}$ is **#P-hard**



Complexity of Approximate Counting

- Given efficiently computable f: $\{0,1\}^n \rightarrow \{0,1\}$ and y $\in \{0,1\}$
 - Want to compute $Pr_{x \sim U}[f(x)=y]$ exactly
 - This is **#P**-hard
 - Because $Pr_x[f(x)=1]=\{\# x's \text{ so that } f(x)=1\}/2^n=\sum_x f(x)/2^n$
 - This is as hard as counting number of satisfying assignments to formula $\boldsymbol{\Psi}$
- However, estimating $Pr_{x\sim U}[f(x)=y]$ to within multiplicative error can be done in Σ_3 , the third level of PH [Stockmeyer '83]
 - So for input $f : \{0,1\}^n \rightarrow \{0,1\}$ and $\epsilon > 0$ can output α :

$$(1-\epsilon)\sum_{x} f(x) \le \alpha \le (1+\epsilon)\sum_{x} f(x)$$

in randomized time poly(n,1/ ϵ) with \tilde{NP} oracle

- But, situation is very different for $g:\{0,1\}^n \rightarrow \{+1,-1\}$
 - Computing Σ_xg(x) exactly is still **#P**-hard
 - Estimating $\Sigma_x g(x)$ to within $(1 \pm \varepsilon)$ multiplicative error is **#P**-hard!
 - Binary search & Padding
 - Can generalize this hardness:
 - Estimating $(\Sigma_x g(x))^2$ to within $(1 \pm \varepsilon)$ multiplicative error is **#P**-hard
 - Why is this so much harder than the {0,1}-valued case?
 - Cancellations

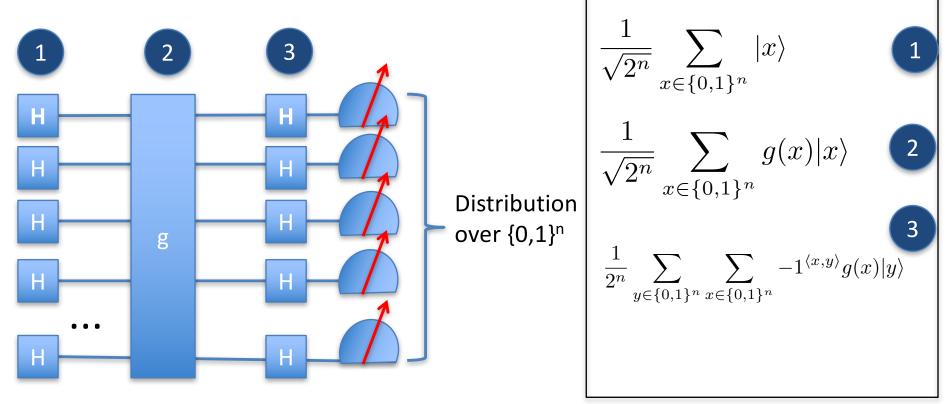
Today

- Want to show that quantum computers are capable of sampling from distributions that cannot be sampled by randomized classical algorithms
- Two constructions of hard distributions
 - 1. "Exact" construction
 - No classical algorithm can sample from exactly the same distribution as the quantum algorithm
 - 2. "Approximate" construction
 - *Goal*: Show no classical algorithm can sample from any distribution even close (in total variation distance) to quantum distribution
 - Why do we want to do this?
 - "To model error"
 - [Aaronson '11] has shown that such a result would imply a "function problem" complexity separation (i.e., **fBQP fBPP**)...
 - Upshot: We'll reach many of the same conclusions of the BosonSampling [AA'10] proposal with a (conceptually) much simpler setup. Our proposal also weakens the hardness conjectures needed by [AA'10], but as of yet does not resolve them....

II. "Exact" Construction [implicit in *Aaronson '11*]

Quantumly sampleable distribution

- *Recall*: For efficiently computable function g:{0,1}ⁿ→{±1}, giving a (1±ε) mult error estimate to (∑_xg(x))² is **#P**-hard
- Consider the following quantum circuit:



Key point: The probability of seeing 00...0 is $(\sum_x g(x))^2/2^{2n}$

Exact classical sampler collapses PH

• Suppose C is a randomized algorithm that samples the outcome distribution so by definition:

$$\Pr_{r \sim U_{p(n)}}[C(r) = y] = \frac{1}{2^{2n}} \left(\sum_{x \in \{0,1\}^n} -1^{\langle x,y \rangle} g(x) \right)^2$$

- Note that p=Pr_r[C(r)=00...0]=(∑_xg(x))²/2²ⁿ encodes a #P-hard quantity
- Use Stockmeyer's algorithm to find a $(1 \pm \epsilon)$ multiplicative error estimate to **p**
- Puts $P^{\#P} \subseteq \Sigma_3$ (but Toda tells us that $PH \subseteq P^{\#P}$)
- **PH** $\subseteq \Sigma_3$ (collapse!!)

How *robust* is this prior construction?

- Not very!!
 - Hardness based on a single exp. small probability
 - Definition: For distribution X over $\{0,1\}^n$:

Given as input ε >0, suppose a classical randomized algorithm samples from any distribution Y, with $|X-Y|_1 < \varepsilon$, in time poly(n,1/ ε)

Call such a classical algorithm an "Approximate Sampler" for X

- Our goal: Find a quantumly sampleable X, where the existence of a classical "Approximate Sampler" would cause PH collapse.
- Prior construction doesn't work! (Adversary just "erases" probability we care about)

III. "Approximate" Construction using Quantum Fourier Sampling [F., Umans '15]

Construction of distribution D_{PER}

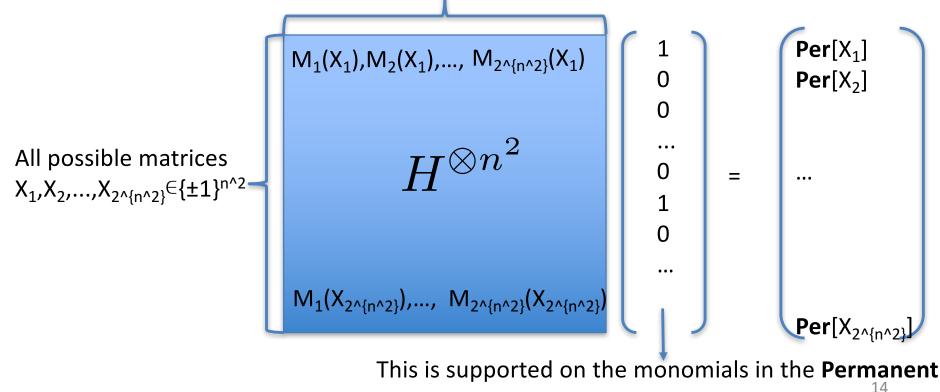
- Define an efficiently computable function h:[n!]→{0,1}^{n^2}
 - Takes a permutation in S_n to its trivial encoding as an n x n permutation matrix
 - Can be computed efficiently using e.g., Lehmer codes
 - Note h is 1-to-1 and h⁻¹ also efficiently computable
- Quantum sampler:
 - Two steps:
 - 1. Prepare uniform superposition over n x n permutation matrices
 - Prepare uniform superposition over S_n
 - Apply h, followed by h⁻¹
 - 2. Hit with Hadamard on each of n² qubits
- Measure in standard basis

 $|\sigma\rangle|00...0\rangle$ $|\sigma\rangle|h(\sigma)\rangle$ $|\sigma \oplus h^{-1}(h(\sigma))\rangle |h(\sigma)\rangle$ $\sigma \overline{\in S_n}$ $|h(\sigma)\rangle$ $\sum_{w \in \{0,1\}^{n^2}} \sum_{\sigma \in S_n}$ This is the permanent of $\{\pm 1\}^{n \times n}$ matrix encoded by the string w

What's happening?

- Recall, Permanent(x₁,x₂,...,x_{n²}) is a multilinear polynomial of degree n
- Our quantum sampling algorithm (*omitting normalization*):

All possible multilinear monomials over n^2 variables $M_1, ..., M_{2^{n^2}}$



This is extremely similar to the hardness consequence for Aaronson and Arkhipov: except their matrix distribution is iid Gaussian, $\mathcal{N}(0,1)$

 $2^{n^2} n!$

Un But our "quantum sampler" is completely different!

- But, if A samples from distribution $\varepsilon \delta$ -far from D_{PFR} we know:

- \sim "Most probabilities in A's distribution must be close to probabilities in D_{PER} "
- At least $(1-\delta)$ -fraction of probabilities must be within $\varepsilon/2^{n^2}$ of true probability
- Strategy: Choose a $X \subseteq \{-1,+1\}^{n^2}$ matrix with iid uniformly distributed entries and approximate its probability using Stockmeyer's algorithm
- We'd obtain solution that "solves Per²(X)" in Σ₃ with two major caveats:
 - Only "works" with probability $1-\delta$ over choice of matrix
 - "Works" means approximating within additive error $\pm \epsilon n!$
 - Our question: How hard is this?

S

 If it's **#P**-hard, by Toda's theorem, an approximate sampler for D_{PER} would imply a **PH** collapse (as in the exact case)

es

D_{PER}:

lity

Relating Additive to Multiplicative

error

- Our procedure computes:
 - $Per^2[X]\pm\epsilon n!$ with probability 1- δ in Σ_3 -time poly(n,1/ ϵ ,1/ δ) time
- This is unnatural! Would like multiplicative error:
 - $(1-\epsilon)Per^{2}[X] \le \alpha \le (1+\epsilon)Per^{2}[X]$ with probability $1-\delta$ in Σ_{3} -time poly $(n, 1/\epsilon, 1/\delta)$ time
- Can we get *multiplicative* error using our procedure?
 - "Permanent Anti-concentration conjecture" [AA'11]
 - Need: exists polynomial p so that for all n and δ
 - $Pr_{X}[|Per(X)| < v(n!)/p(n,1/\delta)] < \delta$
 - This may actually be true!!
 - For Bernoulli distributed {-1,+1}^{n x n} matrices:
 - $\forall \epsilon > 0 \Pr_{X}[|\Pr[X]|^{2} < n!/n^{\epsilon n}] < 1/n^{0.1}[Tao \& Vu '08]$

How hard is "Approximating" the Permanent?

- Scenario 1:
 - Suppose I had a box that:
 - "Solves all the Permanents approximately"
 - Input: ϵ >0 and matrix X \in {-1,+1}^{n x n}
 - Output: α so that:

$$(1 - \epsilon)\operatorname{Per}^{2}(\mathsf{X}) \le \alpha \le (1 + \epsilon)\operatorname{Per}^{2}(\mathsf{X})$$

- In time poly(n, $1/\epsilon$)
- This is **#P**-hard!
 - Proof: "Padding and binary search!"
- Scenario 2:
 - Suppose I had a box that:
 - "Solves most of the Permanents exactly" $\Pr_X[\alpha = \operatorname{Per}^2[\mathsf{X}]] > 1 \delta$
 - For $\delta = 1/poly(n)$
 - This is **#P**-hard!
 - Proof idea: Polynomial interpolation [Lipton '89 in finite field case...]!
- Our "solution" has weakness of both Scenario 1 and 2
 - Hardness proofs break-down!
 - This is exactly the same reason other two "approximate" sampling results need conjectures...

Generalizations

- Entries of Matrix
 - Replace Quantum Fourier Transform over $Z_2^{n^2}$ with Quantum Fourier Transform over $Z_k^{n^2}$
 - Resulting amplitudes proportional to Permanents of matrices with entries of evenly-spaced points around unit circle
- Generalizing the distribution over matrices
 - Can recapture the Gaussian distributed entries of [AA'11]...
- "Hard Polynomial"
 - Generalize Permanent to any *Efficiently Specifiable* polynomial sampling
 - Multilinear, homogenous polynomials with *m* monomials of the form:

$$Q(X_1, X_2..., X_n) = \sum_{y \in [m]} X_1^{h(y)_1} X_2^{h(y)_2} ... X_n^{h(y)_n}$$

- Where h is efficiently computable map (and h^{-1} is also)
- Examples:
 - Permanent, Hamiltonian Cycle polynomial, many more...

Relation to other work

- There are lots of "exact" sampling results
 - Starting with [DiVincenzo-Terhal'02] and [Bremner-Jozsa-Shepherd'10]
 - These distributions can often be sampled by restrictive classes of quantum samplers
 - Constant depth quantum circuits [DT'02]
 - Quantum computations with commuting gates [BJS'10]
 - One clean qubit [Morimae et. al. 2014]
 - Etc...
- "Approximate" sampling is far less understood...
 - "Boson Sampling" [Aaronson and Arkhipov '11]
 - "IQP Sampling" [Bremner, Montanaro and Shepherd'15]
 - Quantum Fourier Sampling [F., Umans '15]
- All rely on similar non-standard hardness assumptions
 - Need to conjecture that computing "average-case approximate" solution to some polynomial is hard for the PH
 - Permanent [AA'11]
 - The partition function of a random instance of an Ising model [BMS'15]
 - Any *Efficiently Specifiable* polynomial [F., Umans '15]

Another recent result related to "Semi-Quantum Computing"

- How powerful is restricted space quantum computation?
 - i.e., Quantum computation with restriction of number of qubits, but no restriction on time
- [F., Lin '16] Tight connection between Matrix inversion problem and unitary space complexity
 - k(n)-Matrix inversion problem
 - Given circuit "encodes" 2^{k(n)}x2^{k(n)} PSD matrix A
 - Input: row index
 - Output: non-zero elements of row
 - Upper bound on condition number $\kappa{<}2^{k(n)}$ so that $\kappa{}^{-1}I{\leq}A{\leq}I$
 - Promised either $|A^{-1}(s,t)| \ge b$ or $\le a$ where a,b are constants between 0 and 1
 - Decide which is the case?
 - Complete for unitary BQSPACE[k(n)]
 - 1. Matrix inversion algorithm doesn't need intermediate measurements
 - 2. We also have hardness!

Thanks!