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I.	Complexity	Theory	Basics



Classical	Complexity	Theory
• P
– Class	of	problems	efficiently	solved	on	classical	computer	

• NP
– Class	of	problems	with	efficiently	

checkable	solutions
– Characterized	by	SAT

• Input:	Ψ:{0,1}n→{0,1}
– n-variable	boolean formula

» E.g.,	(x1∨x2∨x3)∧(x1∨−x2∨x6)∧...
• Problem:	∃x1,x2,...,xn so	that	Ψ(x)=1?

– Could	use	a	box	solving	SAT to	solve	any	problem	in	NP

NP

P
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Beyond	NP
•Tautology

•Input:	Ψ:{0,1}n→{0,1}
•∀x	Ψ(x)=1?
•Complete	for	coNP

•QSATk
•Generalizes	SAT	and	Tautology
•Input:	Ψ:{0,1}n→{0,1}	&	partitioning	S1,S2,...,Sk⊆[n]

• Problem:	∃xS1∀xS2,...,QkxSk so	that	Ψ(x)=1?
• Thought	to	be	strictly	harder	with	larger	k’s	(or	
else	there	is	a	collapse)	

• Σk is	class	of	problems	solvable	with	a	QSATkbox
• PH	is	class	of	problems	solvable	with	a	QSATO(1) box
• PSPACE	is	class	of	problems	solvable	with	a	QSATn box

PSPACE

PH

NP

P
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Complexity	of	Counting
• #SAT
– Input: Ψ:{0,1}n→{0,1}
– Problem: How many satisfying

assignments to Ψ?
• #SAT is complete for #P
• PH⊆P#P [Toda’91]
• is #P-hard

PSPACE

P#P
PH

NP

P

Permanent[X] =
X

�2Sn

nY

i=1

Xi,�(i)

5



Complexity	of	Approximate Counting
• Given	efficiently	computable	f:{0,1}n→{0,1}	and	y∈{0,1}

– Want	to	compute	Prx∼U[f(x)=y]	exactly
– This	is	#P-hard

• Because	Prx[f(x)=1]={#	x’s	so	that	f(x)=1}/2n=∑x f(x)/2n
• This	is	as	hard	as	counting	number	of	satisfying	assignments	to	formula	Ψ

• However,	estimating Prx∼U[f(x)=y]	to	within	multiplicative	error	can	be	
done	in Σ3 ,	the	third	level	of	PH [Stockmeyer ’83]	
• So	for	input	f	:{0,1}n→{0,1}	and	ε>0 can	output	α:

in	randomized	time	poly(n,1/ε)	with	NP	oracle
• But,	situation	is	very	different	for	g:{0,1}n→{+1,-1}	

– Computing	Σxg(x)	exactly	is	still	#P-hard
– Estimating	 Σxg(x)	to	within	(1±ε)	multiplicative error	is	#P-hard!

• Binary	search	&	Padding
– Can	generalize	this	hardness:

• Estimating	(Σxg(x))2	 to	within	(1±ε)	multiplicative error	is	#P-hard
– Why	is	this	so	much	harder	than	the	{0,1}-valued	case?

• Cancellations

(1� ✏)
X

x

f(x)  ↵  (1 + ✏)
X

x

f(x)



Today
• Want	to	show	that	quantum	computers	are	capable	of	sampling	

from	distributions	that	cannot	be	sampled	by	randomized	classical	
algorithms

• Two	constructions	of	hard	distributions
1. “Exact”	construction

• No	classical	algorithm	can	sample	from	exactly	the	same	distribution	as	the	
quantum	algorithm

2. “Approximate”	construction
• Goal:	Show	no	classical	algorithm	can	sample	from	any	distribution	even	

close	(in	total	variation	distance)	to	quantum	distribution
• Why	do	we	want	to	do	this?

– “To	model	error”
– [Aaronson	‘11]	has	shown	that	such	a	result	would	imply	a	“function	problem”	

complexity	separation	(i.e.,	fBQP⊄ fBPP)…

– Upshot:	We’ll	reach	many	of	the	same	conclusions	of	the	
BosonSampling [AA’10]	proposal	with	a	(conceptually)	much	simpler	
setup.		Our	proposal	also	weakens	the	hardness	conjectures	needed	
by	[AA’10],	but	as	of	yet	does	not	resolve	them….
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II.	“Exact”	Construction	[implicit	
in	Aaronson	‘11]
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Quantumly sampleable distribution
• Recall:		For	efficiently	computable	function	g:{0,1}n→{±1},	giving	a	(1±ε)	mult error	

estimate	to	(∑xg(x))2 is	#P-hard	
• Consider	the	following	quantum	circuit:
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Exact	classical	sampler	collapses	PH
• Suppose C is a randomized algorithm that samples the 

outcome distribution so by definition:

• Note that p=Prr[C(r)=00...0]=(∑xg(x))2/22n encodes a #P-hard 
quantity

• Use Stockmeyer’s algorithm to find a (1±ε) multiplicative error
estimate to p

• Puts P#P⊆ Σ3	(but Toda tells us that PH⊆P#P)
• PH⊆ Σ3	(collapse!!)
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How	robust is	this	prior	construction?

• Not	very!!
– Hardness	based	on	a	single	exp.	small	probability	
– Definition:	For	distribution	X	over	{0,1}n:

• Our	goal:	Find	a	quantumly sampleable X,	where	the	
existence	of	a	classical	“Approximate	Sampler”	would	cause	
PH collapse.

• Prior	construction	doesn’t	work!		(Adversary	just	”erases”	
probability	we	care	about)
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Given	as	input	ε>0,	suppose	a	classical	randomized	algorithm	samples	from	
any	distribution	Y,	with	|X-Y|1<ε,	in	time	poly(n,1/ε)

Call	such	a	classical	algorithm	an	“Approximate	Sampler”	for	X	



III.	“Approximate”	Construction	
using	Quantum	Fourier	Sampling	
[F.,	Umans ‘15]
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Construction	of	distribution	DPER

• Define	an	efficiently	computable	function	
h:[n!]→{0,1}n^2

• Takes	a	permutation	in	Sn	to	its	trivial	
encoding	as	an	n	x	n	permutation	matrix

• Can	be	computed	efficiently	using	e.g.,	
Lehmer codes

• Note	h	is	1-to-1	and	h-1 also	
efficiently	computable

• Quantum	sampler:
– Two	steps:
1. Prepare	uniform	superposition	over	n	x	n	

permutation	matrices
• Prepare	uniform	superposition	over	Sn
• Apply	h,	followed	by	h-1

2. Hit	with	Hadamard on	each	of	n2 qubits
• Measure	in	standard	basis This	is	the	permanent	of	{±1}n	x n

matrix	encoded	by	the	string	w	

1

2
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What’s	happening?
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• Recall,	Permanent(x1,x2,…,xn^2)	is	a	multilinear
polynomial	of	degree	n

• Our	quantum	sampling	algorithm	(omitting	
normalization):

1
0
0
...
0
1
0
…

All	possible	multilinear	monomials	over	n^2	variables	M1,...M2^{n^2}

Per[X1]
Per[X2]

…

Per[X2^{n^2}]

=

This	is	supported	on	the	monomials	in	the	Permanent		

All	possible	matrices
X1,X2,...,X2^{n^2}∊{±1}n^2

M1(X1),M2(X1),…, M2^{n^2}(X1)

M1(X2^{n^2}),…, M2^{n^2}(X2^{n^2})

H⌦n2



Approximate	sampler	consequences
• Each	X∈{-1,+1}n	x	n,	the	probability	of	outcome	X	according	to	DPER:		

• Suppose	we	had	an	approximate	sampler,	A,	for	DPER
– Unlike	“exact	case”	can’t	trust	the	sampler	on	any	single	probability	
– But,	if	A	samples	from	distribution	𝜀δ-far	from	DPER we	know:	

• “Most	probabilities	in	A’s	distribution	must	be	close	to	probabilities	in	DPER”
• At	least	(1-δ)-fraction	of	probabilities	must	be	within	𝜀/2n^2 of	true	probability

– Strategy:	Choose	a	X∈{-1,+1}n^2 matrix	with	iid uniformly	distributed	
entries	and	approximate	its	probability	using	Stockmeyer’s algorithm

• We’d	obtain	solution	that	“solves	Per2(X)”	in	Σ3 with	two	major	
caveats:
– Only	“works”	with	probability	1-δ over	choice	of	matrix
– “Works”	means	approximating	within	additive	error	±𝜀n!
– Our	question:	How	hard	is	this?

• If	it’s	#P-hard,	by	Toda’s	theorem,	an	approximate	sampler	for	DPER	would	
imply	a	PH collapse	(as	in	the	exact	case)
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Per2[X]

2n2n!

This	is	extremely	similar	to	the	hardness	consequence	for	
Aaronson	and	Arkhipov:	except	their	matrix	distribution	is	iid
Gaussian,	𝒩(0,1)		

But	our	”quantum	sampler”	is	completely	different!



Relating	Additive	to	Multiplicative	
error

• Our	procedure	computes:
• Per2[X]±𝜖n! with	probability	1-δ in	Σ3-time	poly(n,1/𝜖
,1/δ)	time

• This	is	unnatural! Would	like	multiplicative	error:
• (1-𝜖)Per2[X]≤α ≤(1+𝜖)Per2[X]	with	probability	1-δ in	Σ3-
time	poly(n,1/𝜖,1/δ) time

• Can	we	get	multiplicative error	using	our	
procedure?
• “Permanent	Anti-concentration	conjecture”	[AA’11]

• Need:	exists	polynomial	p	so	that	for	all	n	and	δ
– PrX[|Per(X)|<√(n!)/p(n,1/δ)]<δ

• This	may	actually	be	true!!		
• For	Bernoulli	distributed	{-1,+1}n	x	n matrices:

• ∀ε>0	PrX[|Per[X]|2<n!/nεn]<1/n0.1	[Tao	&	Vu	‘08]
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How	hard	is	“Approximating”	the	
Permanent?

• Scenario 1:
– Suppose	I	had	a	box	that:

• “Solves	all	the	Permanents	approximately”
• Input:	𝜖>0	and	matrix	X∈{-1,+1}n	x	n
• Output:	𝛼 so	that:

• In	time	poly(n,1/𝜖)
– This	is	#P-hard!

• Proof:	“Padding	and	binary	search!”
• Scenario 2:

– Suppose	I	had	a	box	that:
• “Solves	most	of	the	Permanents	exactly”

• For	δ=1/poly(n)
– This	is	#P-hard!

• Proof	idea:	Polynomial	interpolation	[Lipton	’89	in	finite	field	case…]!
• Our	”solution”	has	weakness	of	both	Scenario	1	and	2

– Hardness	proofs	break-down!
– This	is	exactly	the	same	reason	other	two	“approximate”	sampling	results	

need	conjectures…
17

(1� ✏)Per2(X)  ↵  (1 + ✏)Per2(X)

Pr
X
[↵ = Per2[X]] > 1� �



Generalizations
• Entries	of	Matrix

– Replace	Quantum	Fourier	Transform	over	Z2n^2 with	Quantum	
Fourier	Transform	over	Zkn^2
• Resulting	amplitudes	proportional	to	Permanents	of	matrices	with	
entries	of	evenly-spaced	points	around	unit	circle

• Generalizing	the	distribution	over	matrices
– Can	recapture	the	Gaussian	distributed	entries	of	[AA’11]…

• “Hard	Polynomial”
– Generalize	Permanent	to	any	Efficiently	Specifiable	polynomial

sampling
• Multilinear,	homogenous	polynomials	with	mmonomials	of	the	form:

• Where	h	is	efficiently	computable	map	(and	h-1 is	also)
– Examples:

• Permanent,	Hamiltonian	Cycle	polynomial,	many	more…
18
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Relation	to	other	work
• There	are	lots	of	“exact”	sampling	results

– Starting	with	[DiVincenzo-Terhal’02] and	[Bremner-Jozsa-Shepherd’10]
– These	distributions	can	often	be	sampled	by	restrictive	classes	of	

quantum	samplers	
• Constant	depth	quantum	circuits	[DT’02]
• Quantum	computations	with	commuting	gates	[BJS’10]
• One	clean	qubit [Morimae et.	al.	2014]
• Etc…

• “Approximate”	sampling	is	far	less	understood...
– “Boson	Sampling”	[Aaronson	and	Arkhipov	’11]
– “IQP	Sampling”	[Bremner,	Montanaro	and	Shepherd’15]
– Quantum	Fourier	Sampling	[F.,Umans	’15]

• All	rely	on	similar	non-standard	hardness	assumptions
– Need	to	conjecture	that	computing	“average-case	approximate”	

solution	to	some	polynomial	is	hard	for	the	PH
• Permanent	[AA’11]
• The	partition	function	of	a	random	instance	of	an	Ising	model	[BMS’15]
• Any	Efficiently	Specifiable polynomial	[F.,	Umans	‘15]
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Another	recent	result	related	to	
“Semi-Quantum	Computing”

• How	powerful	is	restricted	space	quantum	computation?
– i.e.,	Quantum	computation	with	restriction	of	number	of	qubits,	but	

no	restriction	on	time
• [F.,	Lin	‘16]	Tight	connection	between	Matrix	inversion	problem	and	

unitary	space	complexity
– k(n)-Matrix	inversion	problem

• Given	circuit	“encodes”	2k(n)x2k(n) PSD	matrix	A
– Input:	row	index
– Output:	non-zero	elements	of	row

• Upper	bound	on	condition	number	κ<2k(n) so	that	κ-1I≺A≺I
• Promised	either	|A-1(s,t)|≥b or	≤	a where	a,b are	constants	between	0	and	1
• Decide	which	is	the	case?

– Complete	for	unitary BQSPACE[k(n)]
1. Matrix	inversion	algorithm	doesn’t	need	intermediate	measurements
2. We	also	have	hardness!
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Thanks!
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