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|. Complexity Theory Basics



Classical Complexity Theory

e P
— Class of problems efficiently solved on classical computer
* NP
— Class of problems with efficiently
checkable solutions
— Characterized by SAT a

e Input: ¥:{0,1}"->{0,1}
— n-variable boolean formula
» E.g, (X, VX, VXx3) A, V=X,V Xg) A. ..
* Problem: 3 xq,X,,...,X, SO that W(x)=1?

— Could use a box solving SAT to solve any problem in NP



Beyond NP

*Tautology
*Input: W:{0,1}">{0,1}
oV x W(x)=1?
*Complete for coNP
*QSAT,
*Generalizes SAT and Tautology
eInput: W:{0,1}"->{0,1} & partitioning S,,S,,...,5,& [n]
* Problem: T xg; V Xcy,...,QXsi SO that W(x)=1? PH

 Thought to be strictly harder with larger k’s (or
else there is a collapse) PSPACE

NP

e 2, is class of problems solvable with a QSAT, box
* PHis class of problems solvable with a QSATgq(;) box
* PSPACE is class of problems solvable with a QSAT,, box



Complexity of Counting

* HSAT
— Input: W:{0,1}">{0,1}
— Problem: How many satisfying
assignments to W?
« #SAT is complete for #P
« PHCP#*P [Toda’91]
* Permanent[X] = ) __n__Xz-,a@) is #P-hard

ceS, 1=1

NP

PH

P#P

PSPACE




Complexity of Approximate Counting

Given efficiently computable f:{0,1}"-{0,1} and y={0,1}
— Want to compute Pr, . [f(x)=y] exactly

— This is #P-hard
* Because Pr,[f(x)=1]={# xs so that f(x)=1}/2"=5, f(x)/2"
* This is as hard as counting number of satisfying assignments to formula W

However, estimating Pr, . [f(x)=y] to within multiplicative error can be
done in 3, the third level of PH [Stockmeyer '83]

 Soforinputf:{0,1}"=>{0,1} and €>0 can output a:
1—€Zf )< a<( 1—|—er

in randomized t|me poly(n,1/g) with NP oracle

But, situation is very different for g:{0,1}">{+1,-1}
— Computing 2,g(x) exactly is still #P-hard
— Estimating Z,g(x) to within (1% ¢€) multiplicative error is #P-hard!
. Binary search & Padding
— Can generalize this hardness:
. Estimating (2,8(x))? to within (1=2€) multiplicative error is #P-hard

— Why is this so much harder than the {0,1}-valued case?
. Cancellations



Today

Want to show that quantum computers are capable of sampling
from distributions that cannot be sampled by randomized classical

algorithms
Two constructions of hard distributions

1. “Exact” construction
. No classical algorithm can sample from exactly the same distribution as the
quantum algorithm

2.  “Approximate” construction
. Goal: Show no classical algorithm can sample from any distribution even
close (in total variation distance) to quantum distribution

. Why do we want to do this?

— “To model error”

— [Aaronson ‘11] has shown that such a result would imply a “function problem”
complexity separation (i.e., fBQPJ fBPP)...

—  Upshot: We'll reach many of the same conclusions of the
BosonSampling [AA’10] proposal with a (conceptually) much simpler
setup. Our proposal also weakens the hardness conjectures needed
by [AA’10], but as of yet does not resolve them....



1. “Exact” Construction [implicit
in Aaronson ‘11]



Quantumly sampleable distribution

* Recall: For efficiently computable function g:{0,1}"->{x1}, giving a (1=*¢€) mult error
estimate to (3,g(x))? is #P-hard

* Consider the following quantum circuit:
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Key point: The probability of seeing 00...0 is (3,g(x))%/2%"
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Exact classical sampler collapses PH

Suppose C is a randomized algorithm that samples the
outcome distribution so by definition:

Pr (00 =y]= g [ 3 —109g(a)

r~Uy

Note that p=Pr[C(r)=00...0]=,9(x))?/22" encodes a #P-hard
quantity

Use Stockmeyer’s algorithm to find a (1 =€) multiplicative error
estimate to p

Puts P#*PC 3, (but Toda tells us that PHZS P#P)
PHS Z;(collapse!!)



How robust is this prior construction?

* Not very!!

— Hardness based on a single exp. small probability
— Definition: For distribution X over {0,1}":

Given as input €>0, suppose a classical randomized algorithm samples from
any distribution Y, with [X-Y[ <€, in time poly(n,1/€)

Call such a classical algorithm an “Approximate Sampler” for X

* Our goal: Find a quantumly sampleable X, where the

existence of a classical “Approximate Sampler” would cause
PH collapse.

* Prior construction doesn’t work! (Adversary just “erases”
probability we care about)



I1l. “Approximate” Construction

using Quantum Fourier Sampling
[F., Umans ‘15]}



Construction of distribution Dy

* Define an efficiently computable function 1 G
h:[n!]>{0,1}™2 7 > 10)]00...0)
. Takes a permutation in S, to its trivial  5esn

encoding as an n x n permutation matrix

1
. Can be computed efficiently using e.g., m Z ‘U> |h(a)>

Lehmer codes | F0€Sh
. Note his 1-to-1 and h-1 also - o D h=(h(o h(o
efficiently computable \/ﬁ G; | ( ( ))H ( >>

* Quantum sampler: 1

— Two steps: Vn! Z 7))
1. Prepare uniform superposition over n x n 1 ' "
Z Z (_1)<w,h(a)>|w>
Vnl2n?

permutation matrices
wE{O,l}”2 oeSn,

Prepare uniform superposition over S,
Apply h, followed by h-! i |

2. Hit with Hadamard on each of n2 qubits |
e Measure in standard basis

This is the permanent of {+1}"*n
matrix encoded by the string w
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What’s happening?
* Recall, Permanent(xy,X,,...,X»,) is @ multilinear
polynomial of degree n

e Our quantum sampling algorithm (omitting

normalization):
All possible multilinear rrlonomials over n*2 variables My,...Mjang
c 1Y (G N
1 Per[X,]
M;(X1),M5(X1),..., Maanan(X4) 1
1\A1), V(A4 270 {nr2\Aq 0 Per[X,]
0
All possible matrices ®n2 O _
Xl,Xz,...,Xz/\{n/\z}e{il}nl\z-‘ 1 B
0
\. / \Per[Xyrnnpl/

This is supported on the monomials in the Permlanent



Dpeg:

lity

”

oSt probablities In A'S alstribution must be Close 1O probabliities IN Upgr
* At least (1-6)-fraction of probabilities must be within £/2""2 of true probability
— Strategy: Choose a X< {-1,+1}""? matrix with iid uniformly distributed
entries and approximate its probability using Stockmeyer’s algorithm

* We'd obtain solution that “solves Per?(X)” in 23 with two major
caveats:
— Only “works” with probability 1-6 over choice of matrix
— “Works” means approximating within additive error ten!

— Our question: How hard is this?

 Ifit’s #P-hard, by Toda’s theorem, an approximate sampler for Dy would
imply a PH collapse (as in the exact case)
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Relating Additive to Multiplicative

error
* QOur procedure computes:

* Per?[X]xen! with probability 1-6 in Z;-time poly(n,1/€e
,1/6) time

* This is unnatural! Would like multiplicative error:

* (1-¢)Per?[X]=a £(1+€)Per?[X] with probability 1-6 in Z;-
time poly(n,1/€,1/6) time

 Can we get multiplicative error using our
procedure?

* “Permanent Anti-concentration conjecture” [AA’11]

* Need: exists polynomial p so that for all nand 6
— Pry[|Per(X)|<V(n!)/p(n,1/6)]<b
* This may actually be true!!
* For Bernoulli distributed {-1,+1}"*" matrices:
e Ve&>0Pry[|Per[X]]|%<n!/nt"<1/n%1 [Tao & Vu ‘08]



How hard is “Approximating” the
Permanent?

e Scenario 1:

— Suppose | had a box that:
* “Solves all the Permanents approximately”
* Input: €>0 and matrix X&{-1,+1}"*"
* Qutput: a so that:

(1 — €)Per’(X) < a < (1 + €)Per?(X)

* Intime poly(n,1/e)

— This is #P-hard!
* Proof: “Padding and binary search!”

* Scenario 2:

— Suppose | had a box that:

* “Solves most of the2 Permanents exactly”
]S)’cr[oz = Per*[X]] >1—-19¢

* For 6=1/poly(n)
— This is #P-hard!
* Proof idea: Polynomial interpolation [Lipton ‘89 in finite field case...]!
 OQOur ”solution” has weakness of both Scenario 1 and 2
— Hardness proofs break-down!

— This is exactly the same reason other two “approximate” sampling results
need conjectures...



Generalizations

e Entries of Matrix

— Replace Quantum Fourier Transform over Z,""? with Quantum
Fourier Transform over Z,""?

e Resulting amplitudes proportional to Permanents of matrices with
entries of evenly-spaced points around unit circle

* Generalizing the distribution over matrices
— Can recapture the Gaussian distributed entries of [AA’11]...

* “Hard Polynomial”
— Generalize Permanent to any Efficiently Specifiable polynomial
sampling
* Multilinear, homogenous polynomials with m monomials of the form:
QX1, X5, Xp) = Y X "WhixpMWe  x Mol

yE[m]
* Where h is efficiently computable map (and h1is also)

— Examples:
* Permanent, Hamiltonian Cycle polynomial, many more...



Relation to other work

There are lots of “exact” sampling results
— Starting with [DiVincenzo-Terhal’02] and [Bremner-Jozsa-Shepherd’10]

— These distributions can often be sampled by restrictive classes of
guantum samplers

e Constant depth quantum circuits [DT'02]
* Quantum computations with commuting gates [BJS10]

* One clean qubit [Morimae et. al. 2014]
* Etc...

“Approximate” sampling is far less understood...
— “Boson Sampling” [Aaronson and Arkhipov "11]
— “l1QP Sampling” [Bremner, Montanaro and Shepherd’15]
— Quantum Fourier Sampling [F.,Umans "15]

All rely on similar non-standard hardness assumptions

— Need to conjecture that computing “average-case approximate”
solution to some polynomial is hard for the PH
* Permanent [AA’11]
* The partition function of a random instance of an Ising model [BMS'15]
* Any Efficiently Specifiable polynomial [F., Umans ‘15]
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Another recent result related to
“Semi-Quantum Computing”

 How powerful is restricted space qguantum computation?

— i.e., Quantum computation with restriction of number of qubits, but
no restriction on time

 [F, Lin 16] Tight connection between Matrix inversion problem and
unitary space complexity

— k(n)-Matrix inversion problem

* Given circuit “encodes” 2knx2kin) PSD matrix A
— Input: row index
— Output: non-zero elements of row

» Upper bound on condition number k<2 so that k1I<A<I
* Promised either |Al(s,t)|=b or £ a where a,b are constants between 0 and 1
* Decide which is the case?

— Complete for unitary BQSPACE[k(n)]

1.  Matrix inversion algorithm doesn’t need intermediate measurements
2. We also have hardness!



Thanks!



