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Our motivation: How powerful are quantum
computers with a small number of qubits?

e Our results: Give two natural problems characterize the power of
guantum computation with a given bound on the number of qubits
1. Precise Succinct Hamiltonian problem
2. Well-conditioned Matrix Inversion problem

* These characterizations have many applications
* QMA proof systems and Hamiltonian complexity

* Classical Logspace complexity
* Even connections to physics (e.g., the power of preparing PEPS states)



Quantum space complexity

* BQSPACE[k(n)] is the class of promise problems L=(L L) that can be
decided by a bounded error quantum algorithm acting on k(n) qubits.

* i.e., Exists uniformly generated family of quantum circuits {Q,},.(, 1)« €ach acting on
O(k(]x])) qubits:

* “If answer is yes, the circuit Q, accepts with high probability”

z € Lyes = (0°|QL|1) (10w Q2 [0) > 2/3

* “If answer is no, the circuit Q, accepts with low probability”
€ Lno = (0%1QLI1)(1]ourQx|0%) < 1/3

e Our results show two natural complete problems for BQSPACE[k(n)]

* For any k(n) so that log(n)<k(n)<poly(n)

* Our reductions use classical k(n) space and poly(n) time
e Subtlety: This is “unitary quantum space”

* No intermediate measurements

* Not known if “deferring” intermediate measurements can be done space efficiently



Quantum Merlin-Arthur \ A

* Problems whose solutions can be verified quantumly given a quantum stat

as witness 4 >

* QMA(c,s) is the class of promise problems L=(L,L,) so that:
x € Lyes = 3|¢) Pr|V(x,|¢) =1 >c¢

x € Lp, = V|Y) Pr[V(x,|¢p)) =1] < s
- QMA = QMA(2/3,1/3) = U_,QMA(c,c-1/poly)

* k-Local Hamiltonian problem is QMA-complete (when k>2)[Kitaev '00]
* Input: H = ¥ H;, each term H; is k-local
* Promise either:
* Minimum eigenvalue A,;,(H) > b or 4,,(H) < a
* Where b-a21/poly(n)
* Which is the case?

* Generalizations of QMA:
1. PreciseQMA=U_,QMA(c,c-1/exp)
2. k-bounded QMA _(c,s)
* Arthur’s verification circuit acts on k qubits
* Merlin sends an m qubit witness
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Characterization 1:
Precise Succinct Hamiltonian problem



The Precise Succinct Hamiltonian Problem

* Definition: “Succinct Encoding”

* We say a classical Turing machine M is a Succinct Encoding for 24" x 2k matrix A if:
e Oninputi€{0,1}¢", M outputs non-zero elements in i-th row of A
* Using at most poly(n) time and k(n) space

* k(n)-Precise Succinct Hamiltonian problem

* Input: Succinct Encoding of 2" x 2k Hermitian PSD matrix A

* Promised either:
* Minimum eigenvalue 4_,,,(A) >bor 4.,.(A) <a
* Where b-a>2-0(kin)

* Which is the case?

* Compared to the Local Hamiltonian problem...
* Input is Succinctly Encoded instead of Local
* Precision needed to determine the promise is 1/2%instead of 1/poly(n)

* Our Result: k(n)-P.S Hamiltonian problem is complete for BQSPACE[k(n)]



Upper bound (1/2):
k(n)-P.S Ham.&k(n)-bounded QMA,(c,c-2"))

* Recall: k(n)-Precise Succinct Hamiltonian problem
* Given Succinct Encoding of 2" x 2k Hermitian PSD matrix A, is A,;,(A) € a or A,;,(A) = b where b-a>2-0kn)?
* Recall also: Quantum algorithm for “phase estimation problem” [Kitaev '95]

 Eigenvalues of unitary matrices are roots of unity, e for 0<6<1
* “Phase estimation problem”: Given unitary U and eigenstate |) output an approximation to the phase 6

* PreciseQMA protocol: Merlin sends eigenstate |1)) with minimum eigenvalue
* Arthur runs phase estimation with one ancilla qubit on e* and |y)

1+ e 1 —e A

0) )+ ——— 1)
) %)

* Measure ancilla and accept iff “0”
* Easy to see that we get “0” outcome with probability that’s slightly (2-°®) higher if A, ,(A)< a than if A, ,(A)> b

* But this is exactly what’s needed to establish the claimed bound!

* Remaining question: how do we implement eA?
» We need to implement this operator with precision 2%, since otherwise the error in simulation overwhelms the gap!

* Luckily, we can invoke recent “precise Hamiltonian simulation” results of [Childs et. al’14]
* Given Succinct Encoding of A, implement e“* to within precision € in space that scales with log(1/¢) and time polylog(1/¢)

* Using these results, can implement Arthur’s ﬂgggiste%iarg%%l&m)) space and poly(n) time



Upper bound (2/2):
k(n)-bounded QMA, (c,c-2"") = BQSPACE[k(n)]

1. Error amplify the PreciseQMA protocol
* Goal: Obtain a protocol with error inverse exponential in the witness length, k(n)
* We want to do this while simultaneously preserving verifier space O(k(n))
» We’'ll actually develop amplification technique that does this...

2. “Guess the withess

* Consider this amplified verification protocol run on a maximally mixed state on k(n)
qubits
* Not hard to see that this new “no witness” protocol has a “precise” gap of O(2°(")!

3. Amplify again!
* Use our “space-efficient” QMA error amplification technique again!
e Obtain bounded error, at a cost of exponential time
* But the space remains O(k(n)), establishing the BQSPACE[k(n)] upper bound

II|
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QMA amplification

e Our proof needed a particularly strong QMA amplification procedure
* One that preserves both Merlin’s witness length and Arthur’s verification space

* Prior amplification methods
1. “Repetition” [Kitaev '99]
* Ask Merlin to send many copies of the original witness and run protocol on each one, take majority vote
* Problem with this: number of witness qubits grows with improving error bounds
* Needs r/(c-s)? repetitions to obtain error 2" by Chernoff bound
2. “In-place” Amplification [Marriott and Watrous ‘04]
* Define two projectors: I1g = |0)(0|4ncand 1I; = Va:r\1><1]outvm
* Notice that the max. acceptance probability of the verifier is maximal eigenvalue of I1oII; 11
* Procedure
* Initialize a state consisting of Merlin’s witness and all zero ancilla qubits
+ Alternatingly measure{HO7 1 — Ho}and {Hl, 1 — Hl} many times
* Use post processing to analyze results of measurements
* Analysis relies on “Jordan’s lemma”

* Given two projectors, there’s an orthogonal decomposition of the Hilbert space into 1 and 2-dimensional
subspaces invariant under projectors

* Basically allows verifier to repeat each measurement without “losing” Merlin’s witness
* Because application of these projectors “stays inside” 2D subspaces

* As aresult, we can attain the same type of error reduction as in repetition, without needing additional
witness qubits



* We're not happy with Marriott-Watrous amplification!!

k — bounded QMA,, (¢, s) C (k + ﬁ) — bounded QMA,,(1—27",27")
c—S

* The space grows because we need to keep track of each measurement outcome

* We want to be able to space-efficiently amplify protocol with inverse exponentially

small gap (i.e., c-s=1/2%)

* We are able to improve this!
k —bounded QMA,,, (¢, s) C (k + log o S) — bounded QMA,,(1—-27",27")

* Now the same setting of parameters preserves O(k) space complexity!

* Proof idea:
* Define reflections Ry = 211y — I, Ry = 2I1; — I
* Using Jordan’s lemma:

* Within 2D subspaces, the product RyR, is a rotation by an angle related to acceptance probability of
verifier V,

* Use phase estimation on R R; with Merlin’s state ) and ancillas set to 0
* Key point: Phase estimation to precision j uses O(/og(1/j)) ancilla qubits
* Accept if the phase is larger than fixed threshold, reject otherwise

r




Lower bound: k(n)-Precise Succinct
Hamiltonian is BQSPACE[k(n)]-hard

* Follows from space-efficient QMA amplification and Kitaev’s “clock-construction’

Any language in BQSPACE[k(n)] can be decided by uniform family of quantum
circuits %QXEE{O,l}* of size at most 2k(Ix)

e By our uniformity condition

Kitaev shows how to take this circuit and build a Hamiltonian H = Y12, H; with
the property that:

)

* In the “yes case”, the Hamiltonian’s minimum eigenvalue is less than some quantity a
involving the completeness and the circuit size

* In the “no case”, the Hamiltonian’s minimum eigenvalue is at least some quantity b involving
the soundness and the circuit size

)

By amplifying the completeness and soundness of the circuit we can ensure that
the promise gap of the Hamiltonian, b-3, is at least 2

Easy to show that this Hamiltonian is succinctly encoded
* Follows from sparsity of Kitaev’s construction and uniformity of circuit



Application: PreciseQMA=PSPACE

. Que?stion: How does the power of QMA scale with the completeness-soundness
gap:

* Recall: PreciseQMA=U_,,QMA(c,c-2°lv(n)

* Both upper and lower bounds follow from our completeness result, together

with BQPSPACE=PSPACE [Watrous’03]

* Upper bound (PreciseQMA< PSPACE):
* Showed poly(n)-P.S Ham. & BQSPACE[poly(n)]=PSPACE

* Lower bound (PSPACEZ PreciseQMA) :
1. Showed poly(n)-P.S. Ham. is hard for BQSPACE[poly(n)]=PSPACE
2. Butalsoit’s in PreciseQMA by “poor man’s phase estimation”

e Corollary: “precise k-Local Hamiltonian problem” is PSPACE-complete

 Extension: “Perfect Completeness case”: QMA(1,1-2PoN(n))=PpSPACE

» Corollary: checking if a local Hamiltonian has zero ground state energy is PSPACE-
complete
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Where is this power coming from?

e Could QMA=PreciseQMA=PSPACE?
* Unlikely since QMA=PreciseQMA — PSPACE=PP
* Using QMA < PP
* How powerful is PreciseMA, the classical analogue of PreciseQMA?

* Crude upper bound: PreciseMAS NPP? © PSPACE

* And believed to be strictly less powerful, unless the “Counting Hierarchy”
collapses

* So the power of PreciseQMA seems to come from both the quantum
witness and the small gap, together!
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Understanding “Precise” complexity classes

* We can answer questions in the “precise” regime that we have no
idea how to answer in the “bounded-error” regime

* Example 1: How powerful is QMA(2)?
* PreciseQMA=PSPACE (our result)
* PreciseQMA(2)=NEXP [Blier & Tapp‘07]
* So, PreciseQMA(2) # PreciseQMA, unless NEXP=PSPACE
* Example 2: How powerful are quantum vs classical witnesses?

* PreciseQCMAC NPPP
* So, PreciseQMA # PreciseQCMA, unless PSPACE < NPPP

* Example 3: How powerful is QMA with perfect completeness?
* PreciseQMA=PreciseQMA,=PSPACE
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Characterization 2:
Well-Conditioned Matrix Inversion



The Classical Complexity of Matrix Inversion

* The Matrix Inversion problem
* Input: nonsingular n x n matrix A with integer entries, promised either:

° -1
A1[0,0]>2/3 or 3y, g1 2.7
. A[0,0]<1/3 A= | At=
* Which is the case? o n1 P

* This problem can be solved in classical O(log?(n)) space [Csansky’76]

* Not believed to be solvable classically in O(log(n)) space
* Ifitis, then L=NL (Logspace equivalent of P=NP)



Can we do better guantumly?

* “Well-Conditioned Matrix Inversion” can be solved in non-unitary
BQSPACE[log(n)]! [Ta-Shma’12] building on [HHL'08]
* i.e., same problem with poly(n) upper bound on the condition number, k, so
that kK 1I<A<|
* Appears to attain quadratic speedup in space usage over classical algorithms

* Begs the question: how important is this “well-conditioned”
restriction?

e Can we also solve the general Matrix Inversion problem in quantum space
O(log(n))?
* Or could the Well-Conditioned case be in classical Logspace?



Our results on Matrix Inversion

* Well-conditioned Matrix Inversion is complete for unitary
BQSPACE[log(n)]!
1. We give a new quantum algorithm for Well-conditioned Matrix Inversion
avoiding intermediate measurements
* Combines techniques from [HHL'08] with amplitude amplification

2. We also prove BQSPACE[log(n)] hardness— suggesting that “well-conditioned”
constraint is necessary for guantum Logspace algorithms

e So this is another reason to believe Matrix Inversion can’t be solved in
classical Logspace (because otherwise L=BQL)



Can generalize from log(n) to k(n) qubits...

e Result 3: k(n)-Well-conditioned Matrix Inversion is complete for
BQSPACE[k(n)]
* Input: Succinct Encoding of 2 x 2k PSD matrix A
* Upper bound k<2°kn) on the condition number so that k1I<A<I

* Promised either |A1[0,0]|>22/3 or <1/3
e Decide which is the case?

* Additionally, by varying the dimension and the bound on the
condition number, can use Matrix Inversion problem to characterize
the power of quantum computation with simultaneously bounded
time and space!



Open questions

* Can we use our PreciseQMA=PSPACE characterization to give a
PSPACE upper bound for other complexity classes?
* For example, QMA(2)?

* How powerful is PreciseQIP?
* Natural complete problems for non-unitary quantum space?



Thanks!
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