A Complete Characterization of Unitary Quantum Space Bill Fefferman (QuICS, University of Maryland) Joint with Cedric Lin (QuICS)

Based on arXiv:1604.01384

Our motivation: How powerful are quantum computers with a small number of qubits?

- *Our results*: Give two natural problems *characterize* the power of quantum computation with a given bound on the number of qubits
 - 1. Precise Succinct Hamiltonian problem
 - 2. Well-conditioned Matrix Inversion problem
- These characterizations have many applications
 - **QMA** proof systems and Hamiltonian complexity
 - Classical Logspace complexity
 - Even connections to physics (e.g., the power of preparing **PEPS** states)

Quantum space complexity

- BQSPACE[k(n)] is the class of promise problems L=(L_{yes}, L_{no}) that can be decided by a bounded error quantum algorithm acting on k(n) qubits.
 - i.e., Exists uniformly generated family of quantum circuits $\{Q_x\}_{x \in \{0,1\}^*}$ each acting on O(k(|x|)) qubits:
 - "If answer is yes, the circuit Q_x accepts with high probability"

$$x \in L_{yes} \Rightarrow \langle 0^k | Q_x^{\dagger} | 1 \rangle \langle 1 |_{out} Q_x | 0^k \rangle \ge 2/3$$

• "If answer is no, the circuit Q_x accepts with low probability"

$$x \in L_{no} \Rightarrow \langle 0^k | Q_x^{\dagger} | 1 \rangle \langle 1 |_{out} Q_x | 0^k \rangle \le 1/3$$

- Our results show two natural complete problems for BQSPACE[k(n)]
 - For any k(n) so that log(n)≤k(n)≤poly(n)
 - Our reductions use classical k(n) space and poly(n) time
- Subtlety: This is "unitary quantum space"
 - No intermediate measurements
 - Not known if "deferring" intermediate measurements can be done space efficiently

Quantum Merlin-Arthur

 Problems whose solutions can be verified quantumly given a quantum state as witness

 $|\psi\rangle$

• **QMA**(c,s) is the class of promise problems L=(L_{yes},L_{no}) so that:

$$x \in L_{yes} \Rightarrow \exists |\psi\rangle \operatorname{Pr}[V(x, |\psi\rangle) = 1] \ge c$$
$$x \in L_{no} \Rightarrow \forall |\psi\rangle \operatorname{Pr}[V(x, |\psi\rangle) = 1] \le s$$

- QMA = QMA(2/3,1/3) = U_{c>0}QMA(c,c-1/poly)
- *k*-Local Hamiltonian problem is **QMA**-complete (when k≥2)[Kitaev '00]
 - Input: $H = \sum_{i=1}^{M} H_i$, each term H_i is k-local
 - Promise either:
 - Minimum eigenvalue $\lambda_{\min}(H) > b$ or $\lambda_{\min}(H) < a$
 - Where b-a≥1/poly(n)
 - Which is the case?
- Generalizations of **QMA**:
 - 1. PreciseQMA=U_{c>0}QMA(c,c-1/exp)
 - 2. k-bounded QMA_m(c,s)
 - Arthur's verification circuit acts on k qubits
 - Merlin sends an m qubit witness

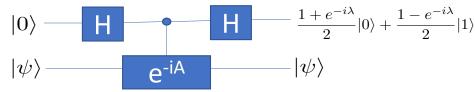
Characterization 1: Precise Succinct Hamiltonian problem

The *Precise Succinct* Hamiltonian Problem

- Definition: "Succinct Encoding"
 - We say a classical Turing machine M is a *Succinct Encoding* for $2^{k(n)} \ge 2^{k(n)}$ matrix A if:
 - On input $i \in \{0,1\}^{k(n)}$, M outputs non-zero elements in i-th row of A
 - Using at most poly(n) time and k(n) space
- k(n)-Precise Succinct Hamiltonian problem
 - Input: Succinct Encoding of 2^{k(n)} x 2^{k(n)} Hermitian PSD matrix A
 - Promised either:
 - Minimum eigenvalue $\lambda_{\min}(A) > b$ or $\lambda_{\min}(A) < a$
 - Where **b-a**>2^{-O(k(n))}
 - Which is the case?
- Compared to the Local Hamiltonian problem...
 - Input is Succinctly Encoded instead of Local
 - Precision needed to determine the promise is 1/2^k instead of 1/poly(n)
- Our Result: k(n)-P.S Hamiltonian problem is complete for BQSPACE[k(n)]

Upper bound (1/2): k(n)-P.S Ham. \subseteq k(n)-bounded QMA_{k(n)}(c,c-2^{-k(n)})

- Recall: k(n)-Precise Succinct Hamiltonian problem
 - Given Succinct Encoding of $2^{k(n)} \ge 2^{k(n)}$ Hermitian PSD matrix A, is $\lambda_{\min}(A) \le a$ or $\lambda_{\min}(A) \ge b$ where $b a \ge 2^{-O(k(n))}$?
- Recall also: Quantum algorithm for "phase estimation problem" [Kitaev '95]
 - Eigenvalues of unitary matrices are roots of unity, $e^{2\pi i\theta}$ for $0 \le \theta < 1$
 - "Phase estimation problem": Given unitary U and eigenstate $|\psi
 angle$ output an approximation to the phase θ
- **PreciseQMA** protocol: Merlin sends eigenstate $|\psi\rangle$ with minimum eigenvalue
 - Arthur runs phase estimation with one ancilla qubit on e $^{\text{-iA}}$ and $|\psi\rangle$



- Measure ancilla and accept iff "0"
- Easy to see that we get "0" outcome with probability that's slightly $(2^{-O(k)})$ higher if $\lambda_{min}(A) < a$ than if $\lambda_{min}(A) > b$
- But this is exactly what's needed to establish the claimed bound!
- *Remaining question*: how do we implement e^{-iA}?
 - We need to implement this operator with precision 2^{-k}, since otherwise the error in simulation overwhelms the gap!
 - Luckily, we can invoke recent "precise Hamiltonian simulation" results of [Childs et. al'14]
 - Given Succinct Encoding of A, implement e^{-iA} to within precision ϵ in space that scales with $\log(1/\epsilon)$ and time $polylog(1/\epsilon)$
- Using these results, can implement Arthur's circuit using O(k(n)) space and poly(n) time

Upper bound (2/2): k(n)-bounded QMA_{k(n)}(c,c-2^{-k(n)}) \subseteq BQSPACE[k(n)]

- 1. Error amplify the PreciseQMA protocol
 - Goal: Obtain a protocol with error inverse exponential in the witness length, k(n)
 - We want to do this while simultaneously preserving verifier space O(k(n))
 - We'll actually develop amplification technique that does this...
- 2. "Guess the witness"!
 - Consider this amplified verification protocol run on a maximally mixed state on k(n) qubits
 - Not hard to see that this new "no witness" protocol has a "precise" gap of O(2^{-k(n)})!
- 3. Amplify again!
 - Use our "space-efficient" **QMA** error amplification technique again!
 - Obtain bounded error, at a cost of exponential time
 - But the space remains O(k(n)), establishing the BQSPACE[k(n)] upper bound

QMA amplification

- Our proof needed a particularly strong QMA amplification procedure
 - One that preserves both Merlin's witness length and Arthur's verification space
- Prior amplification methods
 - 1. "Repetition" [Kitaev '99]
 - Ask Merlin to send many copies of the original witness and run protocol on each one, take majority vote
 - *Problem with this*: number of witness gubits grows with improving error bounds
 - Needs r/(c-s)² repetitions to obtain error 2^{-r} by Chernoff bound
 - "In-place" Amplification [Marriott and Watrous '04] 2.

 - Define two projectors: $\Pi_0 = |0\rangle \langle 0|_{anc}$ and $\Pi_1 = V_x^{\dagger} |1\rangle \langle 1|_{out} V_x$ Notice that the max. acceptance probability of the verifier is maximal eigenvalue of $\Pi_0 \Pi_1 \Pi_0$
 - Procedure
 - Initialize a state consisting of Merlin's witness and all zero ancilla qubits
 - Alternatingly measure $\{\Pi_0, 1 \Pi_0\}$ and $\{\Pi_1, 1 \Pi_1\}$ many times
 - Use post processing to analyze results of measurements
 - Analysis relies on "Jordan's lemma"
 - Given two projectors, there's an orthogonal decomposition of the Hilbert space into 1 and 2-dimensional subspaces invariant under projectors
 - · Basically allows verifier to repeat each measurement without "losing" Merlin's witness
 - Because application of these projectors "stays inside" 2D subspaces
 - As a result, we can attain the same type of error reduction as in repetition, without needing additional witness gubits

For other results improving Marriott-Watrous in various directions see e.g., [Nagaj et. al.'09 & F., Kobayashi, Lin, Morimae, Nishimura, ICALP'16]

• We're not happy with Marriott-Watrous amplification!!

$$k$$
 - bounded $\mathsf{QMA}_m(c,s) \subseteq (k + \frac{r}{(c-s)^2})$ - bounded $\mathsf{QMA}_m(1-2^{-r},2^{-r})$

- The space grows because we need to keep track of each measurement outcome
- We want to be able to space-efficiently amplify protocol with inverse exponentially small gap (i.e., c-s=1/2^k)
- We are able to improve this!

$$k - \text{bounded } \mathsf{QMA}_m(c,s) \subseteq (k + \log \frac{r}{c-s}) - \text{bounded } \mathsf{QMA}_m(1-2^{-r},2^{-r})$$

- Now the same setting of parameters preserves O(k) space complexity!
- Proof idea:
 - Define reflections $R_0=2\Pi_0-I, R_1=2\Pi_1-I$
 - Using Jordan's lemma:
 - Within 2D subspaces, the product R_0R_1 is a rotation by an angle related to acceptance probability of verifier V_x
 - Use phase estimation on R_0R_1 with Merlin's state $|\psi
 angle$ and ancillas set to 0
 - Key point: Phase estimation to precision *j* uses O(log(1/j)) ancilla qubits
 - Accept if the phase is larger than fixed threshold, reject otherwise

Lower bound: k(n)-*Precise Succinct Hamiltonian* is **BQSPACE**[k(n)]-hard

- Follows from space-efficient **QMA** amplification and Kitaev's "clock-construction"
- Any language in BQSPACE[k(n)] can be decided by uniform family of quantum circuits {Q_x}_{x∈{0,1}*} of size at most 2^{k(|x|)}
 - By our uniformity condition
- Kitaev shows how to take this circuit and build a Hamiltonian $H = \sum_{i=1}^{M} H_i$ with the property that:
 - In the "yes case", the Hamiltonian's minimum eigenvalue is less than some quantity a involving the *completeness* and the circuit size
 - In the "no case", the Hamiltonian's minimum eigenvalue is at least some quantity b involving the *soundness* and the circuit size
- By amplifying the completeness and soundness of the circuit we can ensure that the promise gap of the Hamiltonian, b-a, is at least 2-k
- Easy to show that this Hamiltonian is succinctly encoded
 - Follows from sparsity of Kitaev's construction and uniformity of circuit

Application: PreciseQMA=PSPACE

- Question: How does the power of QMA scale with the completeness-soundness gap?
- Recall: PreciseQMA=U_{c>0}QMA(c,c-2^{-poly(n)})
- Both upper and lower bounds follow from our completeness result, together with BQPSPACE=PSPACE [Watrous'03]
 - Upper bound (**PreciseQMA⊆PSPACE**):
 - Showed poly(n)-P.S Ham. ⊆ BQSPACE[poly(n)]=PSPACE
 - - 1. Showed poly(n)-P.S. Ham. is hard for BQSPACE[poly(n)]=PSPACE
 - 2. But also it's in **PreciseQMA** by "poor man's phase estimation"
- Corollary: "precise k-Local Hamiltonian problem" is PSPACE-complete
- Extension: "Perfect Completeness case": QMA(1,1-2^{-poly(n)})=PSPACE
 - Corollary: checking if a local Hamiltonian has zero ground state energy is PSPACEcomplete

Where is this power coming from?

- Could QMA=PreciseQMA=PSPACE?
 - Unlikely since QMA=PreciseQMA ⇒ PSPACE=PP
 - Using $QMA \subseteq PP$
- How powerful is **PreciseMA**, the *classical analogue* of **PreciseQMA**?
 - Crude upper bound: **PreciseMA**⊆**NP**^{PP}⊆**PSPACE**
 - And believed to be strictly less powerful, unless the "Counting Hierarchy" collapses
- So the power of PreciseQMA seems to come from both the quantum witness and the small gap, together!

Understanding "Precise" complexity classes

- We can answer questions in the "precise" regime that we have no idea how to answer in the "bounded-error" regime
- *Example 1*: How powerful is **QMA(2)**?
 - **PreciseQMA=PSPACE** (our result)
 - PreciseQMA(2)=NEXP [Blier & Tapp'07]
 - So, PreciseQMA(2) ≠ PreciseQMA, unless NEXP=PSPACE
- *Example 2*: How powerful are quantum vs classical witnesses?
 - PreciseQCMA \subseteq NP^{PP}
 - So, PreciseQMA ≠ PreciseQCMA, unless PSPACE⊆NP^{PP}
- *Example 3*: How powerful is **QMA** with perfect completeness?
 - PreciseQMA=PreciseQMA₁=PSPACE

Characterization 2: Well-Conditioned Matrix Inversion

The Classical Complexity of Matrix Inversion

- The Matrix Inversion problem
 - Input: nonsingular n x n matrix A with integer entries, promised either:
 - A⁻¹[0,0]>2/3 or
 - A⁻¹[0,0]<1/3
 - Which is the case?

- $\mathbf{A} = \begin{bmatrix} a_{0,0} & a_{0,1} \dots \\ \vdots \\ a_{n,0} & a_{n,1} \dots \end{bmatrix} \qquad \mathbf{A}^{-1} = \begin{bmatrix} ? \dots & ? \\ \vdots \\ ? \dots & ? \end{bmatrix}$
- This problem can be solved in classical O(log²(n)) space [Csansky'76]
- Not believed to be solvable classically in O(log(n)) space
 - If it is, then L=NL (Logspace equivalent of P=NP)

Can we do better quantumly?

- "Well-Conditioned Matrix Inversion" can be solved in non-unitary BQSPACE[log(n)]! [Ta-Shma'12] building on [HHL'08]
 - i.e., same problem with poly(n) upper bound on the condition number, κ, so that κ⁻¹I<A<I
 - Appears to attain quadratic speedup in space usage over classical algorithms
- *Begs the question*: how important is this "well-conditioned" restriction?
 - Can we also solve the *general* Matrix Inversion problem in quantum space O(log(n))?
 - Or could the Well-Conditioned case be in classical Logspace?

Our results on Matrix Inversion

- Well-conditioned Matrix Inversion is complete for unitary BQSPACE[log(n)]!
 - 1. We give a new quantum algorithm for **Well-conditioned Matrix Inversion** avoiding intermediate measurements
 - Combines techniques from [HHL'08] with amplitude amplification
 - 2. We also prove **BQSPACE**[log(n)] hardness– suggesting that "well-conditioned" constraint is *necessary* for quantum **Logspace** algorithms
- So this is another reason to believe Matrix Inversion can't be solved in classical Logspace (because otherwise L=BQL)

Can generalize from log(n) to k(n) qubits...

- Result 3: k(n)-Well-conditioned Matrix Inversion is complete for BQSPACE[k(n)]
 - Input: Succinct Encoding of 2^k x 2^k PSD matrix A
 - Upper bound $\kappa < 2^{O(k(n))}$ on the condition number so that $\kappa^{-1}I \le A \le I$
 - Promised either $|A^{-1}[0,0]| \ge 2/3$ or $\le 1/3$
 - Decide which is the case?
- Additionally, by varying the dimension and the bound on the condition number, can use Matrix Inversion problem to *characterize* the power of quantum computation with simultaneously bounded time *and* space!

Open questions

- Can we use our **PreciseQMA=PSPACE** characterization to give a **PSPACE** upper bound for other complexity classes?
 - For example, **QMA**(2)?
- How powerful is **PreciseQIP**?
- Natural complete problems for *non-unitary* quantum space?

Thanks!