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• Our	results:	Give	two	natural	problems	characterize	the	power	of	
quantum	computation	with	a	given	bound	on	the	number	of	qubits
1. Precise	Succinct	Hamiltonian	problem
2. Well-conditioned	Matrix	Inversion	problem

• These	characterizations	have	many	applications
• QMA proof	systems	and	Hamiltonian	complexity
• Classical	Logspace complexity
• Even	connections	to	physics	(e.g.,	the	power	of	preparing	PEPS states)
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Our	motivation:	How	powerful	are	quantum	
computers	with	a	small	number	of	qubits?



Quantum	space	complexity
• BQSPACE[k(n)]	is	the	class	of	promise	problems	L=(Lyes,Lno)	that	can	be	
decided	by	a	bounded	error	quantum	algorithm	acting	on	k(n) qubits.
• i.e.,	Exists	uniformly	generated	family	of	quantum	circuits	{Qx}xϵ{0,1}* each	acting	on	
O(k(|x|)) qubits:
• “If	answer	is	yes,	the	circuit	Qx accepts	with	high	probability”

• “If	answer	is	no,	the	circuit	Qx accepts	with	low	probability”

• Our	results	show	two	natural	complete	problems	for	BQSPACE[k(n)]
• For	any	k(n) so	that	log(n)≤k(n)≤poly(n)
• Our	reductions	use	classical	k(n)	space	and	poly(n)	time

• Subtlety:	This	is	“unitary	quantum	space”
• No	intermediate	measurements
• Not	known	if	“deferring”	intermediate	measurements	can	be	done	space	efficiently

Theory	Seminar,	UT	Austin

x 2 L

yes

) h0k|Q†
x

|1ih1|
out

Q

x

|0ki � 2/3

x 2 L

no

) h0k|Q†
x

|1ih1|
out

Q

x

|0ki  1/3



|ψ⟩

Quantum	Merlin-Arthur
• Problems	whose	solutions	can	be	verified	quantumly given	a	quantum	state	
as	witness
• QMA(c,s)	is	the	class	of	promise	problems	L=(Lyes,Lno)	so	that:

• QMA	=	QMA(2/3,1/3)	= ⋃c>0QMA(c,c-1/poly)
• k-Local	Hamiltonian	problem	is	QMA-complete (when	k≥2)[Kitaev ’00]

• Input:	𝐻 = ∑ 𝐻&'
&() ,	each	term	𝐻& is	k-local

• Promise	either:
• Minimum	eigenvalue	𝜆min(H)	>	b	or	𝜆min(H)	<	a	
• Where	b-a≥1/poly(n)

• Which	is	the	case?
• Generalizations	of	QMA:

1. PreciseQMA=⋃c>0QMA(c,c-1/exp)	
2. k-bounded	QMAm(c,s)

• Arthur’s	verification	circuit	acts	on	k qubits
• Merlin	sends	an m qubit	witness
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Characterization	1:	
Precise	Succinct	Hamiltonian	problem
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The	Precise	Succinct	Hamiltonian	Problem
• Definition:	“Succinct	Encoding”

• We	say	a	classical	Turing	machine	M	is	a	Succinct	Encoding	for	2k(n) x	2k(n) matrix	A	if:
• On	input i∈{0,1}k(n),	M outputs	non-zero	elements	in	i-th row	of	A
• Using	at	most	poly(n) time	and	k(n) space	

• k(n)-Precise	Succinct	Hamiltonian problem
• Input:	Succinct	Encoding	of	2k(n) x	2k(n) Hermitian	PSD	matrix	A
• Promised	either:

• Minimum	eigenvalue	𝜆min(A)	>	b	or	𝜆min(A)	<	a	
• Where	b-a>2-O(k(n))

• Which	is	the	case?
• Compared	to	the	Local	Hamiltonian	problem…

• Input	is	Succinctly	Encoded	instead	of	Local
• Precision	needed	to	determine	the	promise	is	1/2k	instead	of	1/poly(n)

• Our	Result:	k(n)-P.S	Hamiltonian problem	is	complete for	BQSPACE[k(n)]
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Upper	bound	(1/2):	
k(n)-P.S	Ham.∈k(n)-bounded QMAk(n)(c,c-2-k(n))
• Recall:	k(n)-Precise	Succinct	Hamiltonian problem

• Given	Succinct	Encoding	of	2k(n) x	2k(n) Hermitian	PSD	matrix	A,	is	λmin(A)	≤	a	or λmin(A)	≥	b where	b-a≥2-O(k(n))	?

• Recall	also:	Quantum	algorithm	for	“phase	estimation	problem”	[Kitaev ’95]
• Eigenvalues	of	unitary	matrices	are	roots	of	unity,	e2𝜋iθ for	0≤θ<1
• “Phase	estimation	problem”:	Given	unitary	U	and	eigenstate	|𝜓⟩	output	an	approximation	to	the	phase	θ

• PreciseQMA protocol:	Merlin	sends	eigenstate	|𝜓⟩ with	minimum	eigenvalue
• Arthur	runs	phase	estimation	with	one	ancilla qubit	on	e-iA and	|𝜓⟩

• Measure	ancilla and	accept	iff “0”
• Easy	to	see	that	we	get	“0”	outcome	with	probability	that’s	slightly	(2-O(k))	higher	if	λmin(A)<	a than	if	λmin(A)>	b
• But	this	is	exactly	what’s	needed	to	establish	the	claimed	bound!

• Remaining	question:	how	do	we	implement	e-iA ?
• We	need	to	implement	this	operator	with	precision	2-k,	since	otherwise	the	error	in	simulation	overwhelms	the	gap!
• Luckily,	we	can	invoke	recent	“precise	Hamiltonian	simulation”	results	of	[Childs	et.	al’14]

• Given	Succinct	Encoding	of	A,	implement	e-iA to	within	precision	ε in	space	that	scales	with	log(1/ε)	and	time	polylog(1/ε)

• Using	these	results,	can	implement	Arthur’s	circuit	using	O(k(n)) space	and	poly(n) timeTheory	Seminar,	UT	Austin
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Upper	bound	(2/2):	
k(n)-bounded QMAk(n)(c,c-2-k(n))⊆BQSPACE[k(n)]
1. Error	amplify	the	PreciseQMA protocol
• Goal:	Obtain	a	protocol	with	error	inverse	exponential	in	the	witness	length,	k(n)
• We	want	to	do	this	while	simultaneously	preserving	verifier	space	O(k(n))
• We’ll	actually	develop	amplification	technique	that	does	this…

2. “Guess	the	witness”!
• Consider	this	amplified	verification	protocol	run	on	a	maximally	mixed	state	on	k(n)	
qubits
• Not	hard	to	see	that	this	new	“no	witness”	protocol	has	a	“precise”	gap	of	O(2-k(n))!

3. Amplify	again!
• Use	our	“space-efficient”	QMA error	amplification	technique	again!
• Obtain	bounded	error,	at	a	cost	of	exponential	time
• But	the	space	remains	O(k(n)),	establishing	the	BQSPACE[k(n)]	upper	bound
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QMA amplification	
• Our	proof	needed	a	particularly	strong	QMA amplification	procedure

• One	that	preserves	both	Merlin’s	witness	length	and	Arthur’s	verification	space
• Prior	amplification	methods

1. “Repetition”	[Kitaev ’99]
• Ask	Merlin	to	send	many	copies	of	the	original	witness	and	run	protocol	on	each	one,	take	majority	vote
• Problem	with	this:	number	of	witness	qubits	grows	with	improving	error	bounds
• Needs	r/(c-s)2 repetitions	to	obtain	error	2-r	by	Chernoff bound

2. “In-place”	Amplification	[Marriott	and	Watrous ‘04]
• Define	two	projectors:		 and	
• Notice	that	the	max.	acceptance	probability	of	the	verifier	is	maximal	eigenvalue	of
• Procedure

• Initialize	a	state	consisting	of	Merlin’s	witness	and	all	zero	ancilla qubits
• Alternatingly	measure							 and																																	many	times
• Use	post	processing	to	analyze	results	of	measurements

• Analysis	relies	on	“Jordan’s	lemma”
• Given	two	projectors,	there’s	an	orthogonal	decomposition	of	the	Hilbert	space	into	1	and	2-dimensional	

subspaces	invariant	under	projectors
• Basically	allows	verifier	to	repeat	each	measurement	without	“losing”	Merlin’s	witness
• Because	application	of	these	projectors	“stays	inside”	2D	subspaces

• As	a	result,	we	can	attain	the	same	type	of	error	reduction	as	in	repetition,	without	needing	additional	
witness	qubits
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• We’re	not	happy	with	Marriott-Watrous amplification!!

• The	space	grows	because	we	need	to	keep	track	of	each	measurement	outcome
• We	want	to	be	able	to	space-efficiently	amplify	protocol	with	inverse	exponentially	
small	gap	(i.e.,	c-s=1/2k)

• We	are	able	to	improve	this!

• Now	the	same	setting	of	parameters	preserves	O(k) space	complexity!
• Proof	idea:	

• Define	reflections
• Using	Jordan’s	lemma:

• Within	2D	subspaces,	the	product	R0R1 is	a	rotation	by	an	angle	related	to	acceptance	probability	of	
verifier	Vx

• Use	phase	estimation	on	R0R1	with	Merlin’s	state	|𝜓⟩	and	ancillas set	to	0
• Key	point:	Phase	estimation	to	precision	j uses O(log(1/j)) ancilla qubits

• Accept	if	the	phase	is	larger	than	fixed	threshold,	reject	otherwise

Space-efficient	In-place	amplification

R0 = 2⇧0 � I, R1 = 2⇧1 � I

For	other	results	improving	Marriott-Watrous in	various	directions	see	e.g.,	[Nagaj et.	al.’09 &	F.,	
Kobayashi,	Lin,	Morimae,	Nishimura,	ICALP’16]

k� bounded QMAm(c, s) ✓ (k+ log

r

c� s
)� bounded QMAm(1� 2

�r, 2�r
)

k � bounded QMAm(c, s) ✓ (k +

r

(c� s)2
)� bounded QMAm(1� 2

�r, 2�r
)



Lower	bound:	k(n)-Precise	Succinct	
Hamiltonian	is BQSPACE[k(n)]-hard
• Follows	from	space-efficient	QMA amplification	and	Kitaev’s “clock-construction”
• Any	language	in	BQSPACE[k(n)]	can	be	decided	by	uniform	family	of	quantum	
circuits	{Qx}xϵ{0,1}* of	size	at	most	2k(|x|)
• By	our	uniformity	condition

• Kitaev shows	how	to	take	this	circuit	and	build	a	Hamiltonian	𝐻 = ∑ 𝐻&'
&() 	with	

the	property	that:
• In	the	“yes	case”,	the	Hamiltonian’s	minimum	eigenvalue	is	less	than	some	quantity	a
involving	the	completeness and	the	circuit	size

• In	the	“no	case”,	the	Hamiltonian’s	minimum	eigenvalue	is	at	least	some	quantity	b involving	
the	soundness and	the	circuit	size

• By	amplifying	the	completeness	and	soundness	of	the	circuit	we	can	ensure	that	
the	promise	gap	of	the	Hamiltonian,	b-a,	is	at	least	2-k
• Easy	to	show	that	this	Hamiltonian	is	succinctly	encoded

• Follows	from	sparsity	of	Kitaev’s construction	and	uniformity	of	circuit
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Application: PreciseQMA=PSPACE
• Question:	How	does	the	power	of	QMA	scale	with	the	completeness-soundness	
gap?
• Recall: PreciseQMA=Uc>0QMA(c,c-2-poly(n))
• Both	upper	and	lower	bounds	follow	from	our	completeness	result,	together	
with	BQPSPACE=PSPACE	[Watrous’03]
• Upper	bound	(PreciseQMA⊆PSPACE):

• Showed	poly(n)-P.S	Ham.⊆ BQSPACE[poly(n)]=PSPACE
• Lower	bound	(PSPACE⊆PreciseQMA)	:

1. Showed	poly(n)-P.S.	Ham. is	hard	for	BQSPACE[poly(n)]=PSPACE
2. But	also	it’s	in	PreciseQMA by	“poor	man’s	phase	estimation”

• Corollary:	“precise	k-Local	Hamiltonian	problem”	is	PSPACE-complete
• Extension:	“Perfect	Completeness	case”: QMA(1,1-2-poly(n))=PSPACE

• Corollary:	checking	if	a	local	Hamiltonian	has	zero	ground	state	energy	is	PSPACE-
complete
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Where	is	this	power	coming	from?

• Could	QMA=PreciseQMA=PSPACE?
• Unlikely	since QMA=PreciseQMA⇒ PSPACE=PP

• Using	QMA⊆PP

• How	powerful	is	PreciseMA,	the	classical	analogue	of	PreciseQMA?
• Crude	upper	bound: PreciseMA⊆NPPP⊆PSPACE
• And	believed	to	be	strictly	less	powerful,	unless	the	“Counting	Hierarchy”	
collapses

• So	the	power	of	PreciseQMA seems	to	come	from	both	the	quantum	
witness	and	the	small	gap,	together!
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Understanding	“Precise”	complexity	classes

• We	can	answer	questions	in	the	“precise”	regime	that	we	have	no	
idea	how	to	answer	in	the	“bounded-error”	regime
• Example	1:	How	powerful	is	QMA(2)?
• PreciseQMA=PSPACE	(our	result)
• PreciseQMA(2)=NEXP	 [Blier &	Tapp‘07]
• So,	PreciseQMA(2)	≠	PreciseQMA,	unless	NEXP=PSPACE

• Example	2:	How	powerful	are	quantum	vs	classical	witnesses?
• PreciseQCMA⊆NPPP
• So,	PreciseQMA ≠	PreciseQCMA,	unless	PSPACE⊆NPPP

• Example	3:	How	powerful	is	QMA with	perfect	completeness?
• PreciseQMA=PreciseQMA1=PSPACE
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Characterization	2:	
Well-Conditioned	Matrix	Inversion
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The	Classical	Complexity	of	Matrix	Inversion

• The	Matrix	Inversion	problem
• Input:	nonsingular	n x	n matrix	A	with	integer	entries,	promised	either:

• A-1[0,0]>2/3	or
• A-1[0,0]<1/3

• Which	is	the	case?

• This	problem	can	be	solved	in	classical	O(log2(n)) space	[Csansky’76]
• Not	believed	to	be	solvable	classically	in	O(log(n)) space
• If	it	is,	then	L=NL (Logspace equivalent	of	P=NP)

a0,0 a0,1…

an,0 an,1…
A	=

?... ?

?... ?
A-1 =… …
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Can	we	do	better	quantumly?	

• “Well-Conditioned	Matrix	Inversion”	can be	solved	in	non-unitary	
BQSPACE[log(n)]!		[Ta-Shma’12]	building	on	[HHL’08]
• i.e.,	same	problem	with	poly(n)	upper	bound	on	the	condition	number,	κ,	so	
that	κ-1I≺A≺I
• Appears to	attain	quadratic	speedup	in	space	usage	over	classical	algorithms

• Begs	the	question:	how	important	is	this	“well-conditioned”	
restriction?
• Can	we	also	solve	the	generalMatrix	Inversion	problem	in	quantum	space	
O(log(n))?
• Or	could	the	Well-Conditioned	case	be	in	classical	Logspace?
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Our	results	on	Matrix	Inversion

• Well-conditioned	Matrix	Inversion	is	complete	for	unitary
BQSPACE[log(n)]!
1. We	give	a	new	quantum	algorithm	for	Well-conditioned	Matrix	Inversion	

avoiding	intermediate	measurements
• Combines	techniques	from	[HHL’08]	with	amplitude	amplification

2. We	also	prove	BQSPACE[log(n)]	hardness– suggesting	that	“well-conditioned”	
constraint	is	necessary for	quantum	Logspace algorithms

• So	this	is	another	reason	to	believe	Matrix	Inversion	can’t	be	solved	in	
classical	Logspace (because	otherwise	L=BQL)
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Can	generalize	from	log(n)	to	k(n)	qubits…

• Result	3:	k(n)-Well-conditioned	Matrix	Inversion is	complete	for	
BQSPACE[k(n)]
• Input:	Succinct	Encoding	of	2k x	2k PSD	matrix	A

• Upper	bound	κ<2O(k(n)) on	the	condition	number	so	that	κ-1I≺A≺I
• Promised	either	|A-1[0,0]|≥2/3 or	≤1/3
• Decide	which	is	the	case?

• Additionally,	by	varying	the	dimension	and	the	bound	on	the	
condition	number,	can	use	Matrix	Inversion	problem to	characterize
the	power	of	quantum	computation	with	simultaneously	bounded	
time	and space!
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Open	questions

• Can	we	use	our	PreciseQMA=PSPACE characterization	to	give	a	
PSPACE upper	bound	for	other	complexity	classes?
• For	example,	QMA(2)?

• How	powerful	is	PreciseQIP?
• Natural	complete	problems	for	non-unitary	quantum	space?
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Thanks!
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