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Quantum mechanics challenges the 
foundations of computation
• Extended Church-Turing thesis: everything feasibly computable in the 

physical world is efficiently computable by a classical Turing machine
• Early 1990’s – first evidence that ideal quantum computers violate 

thesis 
• Initial results didn’t solve “natural” problems

• Bernstein-Vazirani [BV’93] 
• Simon’s algorithm [Simon’94]

• Closely followed by Shor’s algorithm [Shor’94], solving the factoring problem
• In all cases, these speedups come from carefully engineered algorithms 

that exploit “particular interference patterns”
• “Proving a quantum system’s computational power by having it factor integers 

is a bit like proving a dolphin’s intelligence by teaching it to solve arithmetic 
problems” [Aaronson & Arkhipov ‘11]



“Quantum Supremacy”: A demonstration of a 
quantum computation that is prohibitively hard 
for classical computers
• In the last decade, two concurrent developments:

1. Theoretical advances in our understanding of restrictive, special-purpose 
quantum devices like BosonSampling [Aaronson & Arkhipov ‘11]

2. Experimental advances have led to the “Noisy Intermediate Scale Quantum” 
era
• Several experimental groups will soon implement noisy 50-70 qubit systems without 

error-correction [e.g., Google/UCSB, IBM, U. Maryland]
• Will not be able demonstrate idealistic speedups from the 90’s
• At the same time, these systems are too large to be simulated by brute-force classically

• Major goal: Combine 1 and 2 to prove that a NISQ era experiment 
cannot be simulated by any classical means – disprove the ECT thesis 
and validate quantum mechanics in a realm of “high complexity”



BosonSampling

• Supremacy proposal: sample from the output distribution of a 
linear optics experiment

• Sampling problems are natural since “raw output” of a quantum 
computer is a sample from an outcome distribution generated by 
quantum measurement

• “If we just watched the dolphin in its natural habitat…it displays equal 
intelligence with no special training at all” [Aaronson & Arkhipov ‘11]

• Theoretically compelling
• Linear optical output probabilities are proportional to the “permanent” of 

random matrices

• Permanents have “average-case hardness”

• Allows us to base hardness on a typical rather than worst-case experiment

• Yet to see sufficiently large experiments to test ECT

• Recent classical simulation algorithms indicate need ~50 photons, 50^2 
modes [e.g., Clifford & Clifford ‘17, Neville et. al.’17]

• Recent experiments ~6 photons and 13 modes



Random Circuit Sampling [e.g., Boixo et. al., ‘16]
• Supremacy proposal: sample from the output distribution of a random 

quantum circuit
• Generate a quantum circuit C on n qubits on a 2D lattice, with d=O(n) layers 

of Haar random nearest-neighbor gates
• Start with |0n〉 basis state and measure in computational basis

• Experimentally compelling
• ~49 qubits in the next few months with controllable couplings 

[Google/UCSB]
• Google/UCSB conjecture this sampling task is classically hard

• Challenge: RCS is different from prior proposals
• Unlike the carefully engineered speedups of the ‘90s, will have to argue hardness of 

typical quantum systems with “generic” interference patterns
• Unlike BosonSampling, no known average-case hardness for RCS

• Without average-case hardness, there’s no evidence that generic 
interference patterns cannot be reproduced classically

• Main result: Provide a theoretical foundation backing RCS
• Prove average-case hardness for RCS: computing output probabilities for 

most random circuits is as hard as computing them in the worst-case
• Proof crucially uses error-correcting codes to infer worst-case probabilities 

from typical output probabilities



Overview

• Our focus is on two perspectives
1. Establishing hardness using complexity theory
2. Verification of supremacy via statistical tests



1. Establishing hardness using complexity 
theory



Complexity theory basics

• P: Class of problems feasible for classical computer
• NP: Characterized by SAT problem: given boolean

formula is it satisfiable?
• #P: Generalization of NP to counting the number 

of satisfying assignments to boolean formula P

NP

P#P



The classical hardness of quantum sampling

• Premise: given quantum circuit as input, exactly computing any particular 
outcome probability is #P-hard
• But these probabilities are exponentially small and cannot be directly estimated

• However, this fact can be leveraged to prove that such quantum outcome 
distributions cannot be classically sampled exactly [e.g., Terhal & 
DiVincenzo’04, Bremner, Jozsa & Shepherd’10…]
• Key challenge: extend hardness of exact sampling results to hold in the 

presence of experimental noise, modelled by closeness in total variation 
distance
• Suffices to prove that it is #P-hard to additively estimate most quantum outcome 

probabilities



BosonSampling hardness

• Evidence
1. Average-case exact hardness (i.e., ε=0 case)
2. Anti-concentration conjecture (unproven for BosonSampling)

• In a typical network, most outcome probabilities are reasonably large
• “Sanity check”

• “Signal is larger than the noise”: ±ε/M additive estimate can be used to recover (1 ± ε’) 
multiplicative estimates

• Computing such multiplicative estimates on all outcomes (i.e., !=0 case) is #P-hard
• But general case, where both ε,!>0 is open, and defies all proof techniques

Proposal Average-case exact (ε=0) Worst-case mult. 
Approximate (!=0)

Anti-concentration General (ε,!>0)

BosonSampling #P-hard #P-hard ? ?

BosonSampling Conjecture: Efficiently approximating 1-! fraction of the outcome 
probabilities of typical linear optical networks to within additive error ±ε/M in is #P-hard 



Random Circuit Sampling hardness

• But what good is anti-concentration without average-case hardness?
• Anti-concentration tells us most output probabilities are somewhat large

• For these large probabilities, an additive estimate suffices to prove a multiplicative 
estimate

• So this only allows us to compute multiplicative estimates on average

RCS Conjecture: Given as input random n qubit quantum circuit C, outputting an 
efficient additive estimate ! ∈ |〈0n|C|0n〉|2 ± ε/2n with probability 1-% (over choice of 
C) is #P-hard

Proposal Average-case exact 
(ε=0)

Worst-case Mult. 
Approximate (%=0)

Anti-concentration General 
(ε,%>0)

BosonSampling #P-hard #P-hard ? ?
RCS wrt 2D grid, depth 
O(n)

? #P-hard Yes (e.g., [BH ’13]) ?

RCS Conjecture: Given as input random n qubit quantum circuit C, outputting an 
efficient additive estimate ! ∈ |〈y|C|0n〉|2 ± ε/2n with probability 1-% (over choice of C 
and outcome y) is #P-hard

(Today!)



Average-case hardness for permanent of 
matrices over finite fields [Lipton ‘91]
• Permanent of n x n matrix is (worst-case) #P-hard [Valiant ‘79]

• Algebraic property: permanent is a degree n polynomial on n2 variables  
• Lipton shows “worst-to-average case reduction”

• Need compute permanent of worst-case matrix X
• But we only have access to algorithm O that correctly computes most permanents

• i.e., 

• Choose n+1 fixed non-zero points t1,t2,…,tn+1∈"q and uniformly random matrix R
• Consider line A(t)=X+tR

• Observation 1 “marginal property”: for each i, A(ti) is a random matrix over "q
n x n

• Observation 2: “univariate polynomial”: per[A(t)] is a degree n polynomial in t

• But now these n+1 evaluation points uniquely define the polynomial, so use error-
correction (noisy polynomial interpolation) and evaluate per[A(0)]=per[X]

per[X] =
X
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Main result: Worst-to-average-case RCS reduction
• Algebraic property: much like permanent, fixed amplitudes of random 

quantum circuits have low-degree polynomial structure
• Consider circuit C=CmCm-1…C1
• Structure comes from Feynman path integral:

• This is a polynomial of degree m in the gate entries of the circuit
• So the output probability is a polynomial of degree 2m

h0n|C|0ni =
X

y2,y3,...,ym2{0,1}n

h0n|Cm|ymihym|Cm�1|ym�1i...hy2|C1|0ni
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Worst-to-Average Reduction-Attempt 1:  Copy 
Lipton’s proof
• Our case: want to compute |〈0n|C|0n〉|2 for worst case C

• But we only have the ability to compute output probabilities for most circuits

• Recall: Lipton wanted to compute per[X], choose random R, 
considered line A(t)=X+tR

• Problem:  can’t just perturb gates in a random linear direction 
(quantum circuits aren’t linear… i.e., if A is unitary, B is unitary, A+tB is 
not necessary unitary)



New approach to scramble gates of fixed circuit
• Choose and fix {Hi}i∈[m] Haar random gates 

• Now consider new circuit C’=C’mC’m-1…C’1 so that for each gate C’i=CiHi
• Notice that each gate in C’ is completely random – “marginal property”

• But recall, Lipton also made use of “univariate polynomial structure”

• Main idea: “Rotate back towards C by small angle θ” (i.e., C’i=CiHie-ihiθ)
• If θ=1 the corresponding circuit C’=C, and if θ ≈ small, each gate is close to Haar

random
• Now take several non-zero but small θ and apply polynomial interpolation…



This is still not the “right way” to scramble!

• Problem: e-ihiθ is not polynomial in θ
• Solution: take fixed truncation of Taylor series for e-ihiθ

• So each gate entry is a polynomial in θ and so is |〈0n|C|0n〉|2
• Now interpolate and compute p(1)= |〈0n|C|0n〉|2

• This shows average-case exact hardness for a different circuit 
distribution! 
• But we show that approximate hardness over this “truncated” circuit 

distribution is equivalent to the original RCS hardness conjecture (i.e., 
approximate average-case hardness over the gatewise Haar distribution)



2. Using statistical tests to verify RCS



Verifying RCS in the NISQ era

• Constraint:  can only take a small (poly(n)) number of samples from 
the quantum device
• Unique tool in NISQ Era: It’s feasible to take “modestly exponential” 

classical computation time per sample
• Challenge: Complexity arguments require closeness in total variation 

distance. But we can’t hope to unconditionally verify this with few 
samples from the device.



Candidate test for verifying RCS: cross-entropy 
[Boixo et. al., 16]
• We want to compute:

• Note this can be well-approximated– take samples x1,x2,…,xk:
• For each, use exp(n) classical processing time to compute log of ideal 

probabilities!
• Mean converges to expectation with k=poly(n) samples from the device by 

Chernoff
• Then accept if score is sufficiently close to the expected ideal cross-

entropy, which can be calculated

CE(pdev, pid) =
X

x

pdev(x) log
1

pid(x)



Why might one believe this verifies RCS?

• This is a “one-dimensional projection” of observed data
• Does not verify closeness in total variation distance directly
• (Theorem: exist distributions far in total variation which score well on CE)
• [Boixo et al. ’16]: Assume that

⍴dev =⍺⍴id + (1-⍺) Id
In this case, achieving near-perfect cross-entropy certifies closeness in 
total variation distance



Deeper reasons to believe in Cross-Entropy

• This assumption can be weakened, if we “merely believe”:
• H(pdev)≥ H(pid)

• Pinsker’s inequality: 

• Where |pdev-pid|KL=CE(pdev,pid)-H(pdev)

• So if we find cross-entropy ε-close to ideal, we’ve certified closeness 
in total variation distance to error O(ε1/2)

• This assumption makes sense if you think your device is corrupted by 
random errors

|pdev � pid|TV 
r

1

2
|pdev � pid|KL



Removing assumption: Is scoring high on CE 
“intrinsically” hard? 
• The output distributions of RCS are “Porter-Thomas”

• Pr[px = q/N] = e-q

• This “shape” of the distribution is *not* a signature of quantum effects!
• We show the “shape” can be reproduced classically (e.g., by Poisson processes)

• However, pairs of distributions scoring highly on CE test share similar 
“heavy” outcomes
• This intuition was sharpened by a recent proposal of Aaronson & Chen called 

“HOG”

• Scoring above some threshold conjectured to be intrinsically hard
• But don’t know how to give complexity theoretic evidence



Introducing… Binned Output Generation (BOG)
• Why not use the same number of 

samples and take a multidimensional 
projection?
• Consider dividing the [0,1] interval into 

poly(n) bins
• Observe k samples x1,x2,…,xk and 

calculate ideal probabilities for each 
sample on supercomputer
• Accept if the number of outcome 

probabilites in each bin are 
approximately equal to expected 
frequency in each bin
• Verifies cross-entropy and HOG –

inherits the advantages of both (if you 
believe in either…)



Thanks!


