"Quantum Supremacy" and the Complexity of Random Circuit Sampling

Bill Fefferman

UC Berkeley/NIST
Joint with Adam Bouland, Chinmay Nirkhe, and Umesh Vazirani

Quantum mechanics challenges the foundations of computation

- Extended Church-Turing thesis: everything feasibly computable in the physical world is efficiently computable by a classical Turing machine
- Early 1990's - first evidence that ideal quantum computers violate thesis
- Initial results didn't solve "natural" problems
- Bernstein-Vazirani [BV'93]
- Simon's algorithm [Simon'94]
- Closely followed by Shor's algorithm [Shor'94], solving the factoring problem
- In all cases, these speedups come from carefully engineered algorithms that exploit "particular interference patterns"
- "Proving a quantum system's computational power by having it factor integers is a bit like proving a dolphin's intelligence by teaching it to solve arithmetic problems" [Aaronson \& Arkhipov '11]

"Quantum Supremacy": A demonstration of a quantum computation that is prohibitively hard for classical computers

- In the last decade, two concurrent developments:

1. Theoretical advances in our understanding of restrictive, special-purpose quantum devices like BosonSampling [Aaronson \& Arkhipov '11]
2. Experimental advances have led to the "Noisy Intermediate Scale Quantum" era

- Several experimental groups will soon implement noisy 50-70 qubit systems without error-correction [e.g., Google/UCSB, IBM, U. Maryland]
- Will not be able demonstrate idealistic speedups from the 90's
- At the same time, these systems are too large to be simulated by brute-force classically
- Major goal: Combine 1 and 2 to prove that a NISQ era experiment cannot be simulated by any classical means - disprove the ECT thesis and validate quantum mechanics in a realm of "high complexity"

BosonSampling

- Supremacy proposal: sample from the output distribution of a linear optics experiment
- Sampling problems are natural since "raw output" of a quantum computer is a sample from an outcome distribution generated by quantum measurement
- "If we just watched the dolphin in its natural habitat...it displays equal intelligence with no special training at all" [Aaronson \& Arkhipov '11]
- Theoretically compelling
- Linear optical output probabilities are proportional to the "permanent" of random matrices
- Permanents have "average-case hardness"
- Allows us to base hardness on a typical rather than worst-case experiment
- Yet to see sufficiently large experiments to test ECT
- Recent classical simulation algorithms indicate need ~50 photons, 50^2 modes [e.g., Clifford \& Clifford '17, Neville et. al.'17]
- Recent experiments ~ 6 photons and 13 modes

Random Circuit Sampling [e.g., Boixo et. al., '16]

- Supremacy proposal: sample from the output distribution of a random quantum circuit
- Generate a quantum circuit C on n qubits on a 2D lattice, with $d=O(n)$ layers of Haar random nearest-neighbor gates
- Start with $\left|0^{n}\right\rangle$ basis state and measure in computational basis
- Experimentally compelling
- ~49 qubits in the next few months with controllable couplings [Google/UCSB]
- Google/UCSB conjecture this sampling task is classically hard
- Challenge: RCS is different from prior proposals
- Unlike the carefully engineered speedups of the ' 90 s, will have to argue hardness of typical quantum systems with "generic" interference patterns

- Unlike BosonSampling, no known average-case hardness for RCS
- Without average-case hardness, there's no evidence that generic interference patterns cannot be reproduced classically
- Main result: Provide a theoretical foundation backing RCS
- Prove average-case hardness for RCS: computing output probabilities for most random circuits is as hard as computing them in the worst-case
- Proof crucially uses error-correcting codes to infer worst-case probabilities from typical output probabilities

Overview

- Our focus is on two perspectives

1. Establishing hardness using complexity theory
2. Verification of supremacy via statistical tests
3. Establishing hardness using complexity theory

Complexity theory basics

- P: Class of problems feasible for classical computer
- NP: Characterized by SAT problem: given boolean formula is it satisfiable?
- \#P: Generalization of NP to counting the number of satisfying assignments to boolean formula

The classical hardness of quantum sampling

- Premise: given quantum circuit as input, exactly computing any particular outcome probability is \#P-hard
- But these probabilities are exponentially small and cannot be directly estimated
- However, this fact can be leveraged to prove that such quantum outcome distributions cannot be classically sampled exactly [e.g., Terhal \& DiVincenzo'04, Bremner, Jozsa \& Shepherd'10...]
- Key challenge: extend hardness of exact sampling results to hold in the presence of experimental noise, modelled by closeness in total variation distance
- Suffices to prove that it is \#P-hard to additively estimate most quantum outcome probabilities

BosonSampling hardness

BosonSampling Conjecture: Efficiently approximating 1- δ fraction of the outcome probabilities of typical linear optical networks to within additive error $\pm \varepsilon / \mathrm{M}$ in is \#P-hard

- Evidence

1. Average-case exact hardness (i.e., $\varepsilon=0$ case)
2. Anti-concentration conjecture (unproven for BosonSampling)

- In a typical network, most outcome probabilities are reasonably large
- "Sanity check"
- "Signal is larger than the noise": $\pm \varepsilon / \mathrm{M}$ additive estimate can be used to recover ($1 \pm \varepsilon^{\prime}$) multiplicative estimates
- Computing such multiplicative estimates on all outcomes (i.e., $\delta=0$ case) is \#P-hard
- But general case, where both $\varepsilon, \delta>0$ is open, and defies all proof techniques

Proposal	Average-case exact $(\varepsilon=0)$	Worst-case mult. Approximate $(\delta=0)$	Anti-concentration	General $(\varepsilon, \delta>0)$
BosonSampling	\#P-hard	\#P-hard	$?$	$?$

Random Circuit Sampling hardness

RCS Conjecture: Given as input random n qubit quantum circuit \mathbf{C}, outputting an

Proposal	Average-case exact $(\varepsilon=0)$	Worst-case Mult. Approximate $(\delta=0)$	Anti-concentration	General $(\varepsilon, \delta>0)$	
BosonSampling	\#P-hard	\#P-hard	?	?	
RCS wrt 2D grid, depth O(n)	$?$	(Today!)	\#P-hard	Yes (e.g., [BH '13])	?

- But what good is anti-concentration without average-case hardness?
- Anti-concentration tells us most output probabilities are somewhat large
- For these large probabilities, an additive estimate suffices to prove a multiplicative estimate
- So this only allows us to compute multiplicative estimates on average

Average-case hardness for permanent of matrices over finite fields [Lipton '91]

- Permanent of $\mathrm{n} \times \mathrm{n}$ matrix is (worst-case) \#P-hard [Valiant '79]

$$
\operatorname{per}[X]=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} X_{i, \sigma(i)}
$$

- Algebraic property: permanent is a degree n polynomial on n^{2} variables
- Lipton shows "worst-to-average case reduction"
- Need compute permanent of worst-case matrix X
- But we only have access to algorithm O that correctly computes most permanents
- i.e., $\operatorname{Pr}_{Y \sim U_{\mathbb{F}}^{n \times n}}[O(Y)=\operatorname{per}[Y]] \geq 1-\frac{1}{3(n+1)}$
- Choose $\mathrm{n}+1$ fixed non-zero points $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{n}+1} \in \mathbb{F}_{\mathrm{q}}$ and uniformly random matrix R
- Consider line $\mathrm{A}(\mathrm{t})=\mathrm{X}+\mathrm{tR}$
- Observation 1 "marginal property": for each $i, A\left(t_{i}\right)$ is a random matrix over $\mathbb{F}_{q}{ }^{n \times n}$
- Observation 2: "univariate polynomial": $\operatorname{per}[A(t)]$ is a degree n polynomial in t
- But now these $n+1$ evaluation points uniquely define the polynomial, so use errorcorrection (noisy polynomial interpolation) and evaluate $\operatorname{per}[\mathrm{A}(0)]=\operatorname{per}[\mathrm{X}]$

Main result: Worst-to-average-case RCS reduction

- Algebraic property: much like permanent, fixed amplitudes of random quantum circuits have low-degree polynomial structure
- Consider circuit $\mathrm{C}_{\mathrm{C}} \mathrm{C}_{\mathrm{m}} \mathrm{C}_{\mathrm{m}-1} \ldots \mathrm{C}_{1}$
- Structure comes from Feynman path integral:

$$
\left\langle 0^{n}\right| C\left|0^{n}\right\rangle=\sum_{y_{2}, y_{3}, \ldots, y_{m} \in\{0,1\}^{n}}\left\langle 0^{n}\right| C_{m}\left|y_{m}\right\rangle\left\langle y_{m}\right| C_{m-1}\left|y_{m-1}\right\rangle \ldots\left\langle y_{2}\right| C_{1}\left|0^{n}\right\rangle
$$

- This is a polynomial of degree m in the gate entries of the circuit
- So the output probability $\left.\left|\left\langle 0^{n}\right| C\right| 0^{n}\right\rangle\left.\right|^{2}$ is a polynomial of degree 2 m

Worst-to-Average Reduction-Attempt 1: Copy Lipton's proof

- Our case: want to compute $\left.\left|\left\langle 0^{n}\right| \mathrm{C}\right| 0^{n}\right\rangle\left.\right|^{2}$ for worst case C
- But we only have the ability to compute output probabilities for most circuits
- Recall: Lipton wanted to compute per[X], choose random R, considered line $A(t)=X+t R$
- Problem: can't just perturb gates in a random linear direction (quantum circuits aren't linear... i.e., if A is unitary, B is unitary, $A+t B$ is not necessary unitary)

New approach to scramble gates of fixed circuit

- Choose and fix $\left\{\mathrm{H}_{\mathrm{i}}\right\}_{i \in[m]}$ Haar random gates
- Now consider new circuit $\mathrm{C}^{\prime}=\mathrm{C}^{\prime}{ }_{m} \mathrm{C}^{\prime}{ }_{m-1} \ldots \mathrm{C}^{\prime}{ }_{1}$ so that for each gate $\mathrm{C}_{\mathrm{i}}{ }^{2}=\mathrm{C}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}$
- Notice that each gate in C^{\prime} is completely random - "marginal property"
- But recall, Lipton also made use of "univariate polynomial structure"
- Main idea: "Rotate back towards C by small angle $\theta^{\prime \prime}$ (i.e., $\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}} \mathrm{e}^{-\mathrm{h}, \mathrm{i}, \theta}$)
- If $\theta=1$ the corresponding circuit $\mathrm{C}^{\prime}=\mathrm{C}$, and if $\theta \approx$ small, each gate is close to Haar random
- Now take several non-zero but small θ and apply polynomial interpolation...

This is still not the "right way" to scramble!

- Problem: $\mathrm{e}^{-\mathrm{i} h \mathrm{i} \theta}$ is not polynomial in θ
- Solution: take fixed truncation of Taylor series for $\mathrm{e}^{-\mathrm{h}, \theta}$
- So each gate entry is a polynomial in θ and so is $\left.\left|\left\langle 0^{n}\right| C\right| 0^{n}\right\rangle\left.\right|^{2}$
- Now interpolate and compute $\left.p(1)=\left|\left\langle 0^{n}\right| C\right| 0^{n}\right\rangle\left.\right|^{2}$
- This shows average-case exact hardness for a different circuit distribution!
- But we show that approximate hardness over this "truncated" circuit distribution is equivalent to the original RCS hardness conjecture (i.e., approximate average-case hardness over the gatewise Haar distribution)

2. Using statistical tests to verify RCS

Verifying RCS in the NISQ era

- Constraint: can only take a small (poly(n)) number of samples from the quantum device
- Unique tool in NISQ Era: It's feasible to take "modestly exponential" classical computation time per sample
- Challenge: Complexity arguments require closeness in total variation distance. But we can't hope to unconditionally verify this with few samples from the device.

Candidate test for verifying RCS: cross-entropy [Boixo et. al., 16]

- We want to compute:

$$
C E\left(p_{d e v}, p_{i d}\right)=\sum_{x} p_{d e v}(x) \log \frac{1}{p_{i d}(x)}=\mathbb{E}_{p_{\text {dev }}} \log \left(\frac{1}{p_{i d}}\right)
$$

- Note this can be well-approximated- take samples $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}$:
- For each, use $\exp (\mathrm{n})$ classical processing time to compute log of ideal probabilities!
- Mean converges to expectation with $\mathrm{k}=$ poly(n) samples from the device by Chernoff
- Then accept if score is sufficiently close to the expected ideal crossentropy, which can be calculated

Why might one believe this verifies RCS?

- This is a "one-dimensional projection" of observed data
- Does not verify closeness in total variation distance directly
- (Theorem: exist distributions far in total variation which score well on CE)
- [Boixo et al. '16]: Assume that

$$
\rho_{\mathrm{dev}}=\alpha \rho_{\mathrm{id}}+(1-\alpha) \mathrm{Id}
$$

In this case, achieving near-perfect cross-entropy certifies closeness in total variation distance

Deeper reasons to believe in Cross-Entropy

- This assumption can be weakened, if we "merely believe":
- $H\left(p_{\text {dev }}\right) \geq H\left(p_{i d}\right)$
- Pinsker's inequality:

$$
\left|p_{\text {dev }}-p_{i d}\right|_{T V} \leq \sqrt{\frac{1}{2}\left|p_{d e v}-p_{i d}\right|_{K L}}
$$

- Where $\left|p_{\text {dev }}-p_{\text {id }}\right|_{k l}=C E\left(p_{\text {devv }} p_{\text {id }}\right)-H\left(p_{\text {dev }}\right)$
- So if we find cross-entropy ε-close to ideal, we've certified closeness in total variation distance to error $\mathrm{O}\left(\varepsilon^{1 / 2}\right)$
- This assumption makes sense if you think your device is corrupted by random errors

Removing assumption: Is scoring high on CE "intrinsically" hard?

- The output distributions of RCS are "Porter-Thomas"
- $\quad \operatorname{Pr}\left[p_{\mathrm{x}}=\mathrm{q} / \mathrm{N}\right]=\mathrm{e}^{-\mathrm{q}}$
- This "shape" of the distribution is *not* a signature of quantum effects!
- We show the "shape" can be reproduced classically (e.g., by Poisson processes)
- However, pairs of distributions scoring highly on CE test share similar "heavy" outcomes
- This intuition was sharpened by a recent proposal of Aaronson \& Chen called "HOG"

$$
\mathbb{E}_{p_{\text {dev }}} \delta\left(p_{i d}\right. \text { is "heavier than median") }
$$

- Scoring above some threshold conjectured to be intrinsically hard
- But don't know how to give complexity theoretic evidence

Introducing... Binned Output Generation (BOG)

- Why not use the same number of samples and take a multidimensional projection?
- Consider dividing the $[0,1]$ interval into poly(n) bins
- Observe k samples $x_{1}, x_{2}, \ldots, x_{k}$ and calculate ideal probabilities for each sample on supercomputer
- Accept if the number of outcome probabilites in each bin are approximately equal to expected frequency in each bin
- Verifies cross-entropy and HOG inherits the advantages of both (if you

sample number i believe in either...)

Thanks!

