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Quantum mechanics challenges the
foundations of computation

» Extended Church-Turing thesis: everything feasibly computable in the
physical world is efficiently computable by a classical Turing machine

* Early 1990’s — first evidence that ideal quantum computers violate
thesis
* Initial results didn’t solve “natural” problems
e Bernstein-Vazirani [BV’'93]
e Simon’s algorithm [Simon’94]
* Closely followed by Shor’s algorithm [Shor’94], solving the factoring problem

* In all cases, these speedups come from carefully engineered algorithms
that exploit “particular interference patterns”
* “Proving a quantum system’s computational power by having it factor integers

is a bit like proving a dolphin’s intelligence by teaching it to solve arithmetic
problems” [Aaronson & Arkhipov ‘11]



“Quantum Supremacy”: A demonstration of a
guantum computation that is prohibitively hard

for classical computers

* In the last decade, two concurrent developments:

1. Theoretical advances in our understanding of restrictive, special-purpose
guantum devices like BosonSampling [Aaronson & Arkhipov ‘11]

2. Experimental advances have led to the “Noisy Intermediate Scale Quantum”
era

» Several experimental groups will soon implement noisy 50-70 qubit systems without
error-correction [e.g., Google/UCSB, IBM, U. Maryland]

* Will not be able demonstrate idealistic speedups from the 90’s
* At the same time, these systems are too large to be simulated by brute-force classically

* Major goal: Combine 1 and 2 to prove that a NISQ era experiment
cannot be simulated by any classical means — disprove the ECT thesis
and validate qguantum mechanics in a realm of “high complexity”



BosonSampling

* Supremacy proposal: sample from the output distribution of a
linear optics experiment

* Sampling problems are natural since “raw output” of a quantum
computer is a sample from an outcome distribution generated by
guantum measurement

* “If we just watched the dolphin in its natural habitat...it displays equal
intelligence with no special training at all” [Aaronson & Arkhipov ‘11]

* Theoretically compelling

* Linear optical output probabilities are proportional to the “permanent” of
random matrices

* Permanents have “average-case hardness”
* Allows us to base hardness on a typical rather than worst-case experiment

* Yet to see sufficiently large experiments to test ECT

* Recent classical simulation algorithms indicate need ~50 photons, 5012
modes [e.g., Clifford & Clifford ‘17, Neville et. al.”17]

* Recent experiments ~6 photons and 13 modes



Random Circuit Sampling [e.g., Boixo et. al., ‘16]

Supremacy proposal: sample from the output distribution of a random
quantum circuit
* Generate a guantum circuit C on n qubits on a 2D lattice, with d=0(n) layers
of Haar random nearest-neighbor gates

 Start with |0") basis state and measure in computational basis

Experimentally compelling
e ~49 qubits in the next few months with controllable couplings
[Google/UCSB]
Google/UCSB conjecture this sampling task is classically hard

* Challenge: RCS is different from prior proposals

* Unlike the carefully engineered speedups of the ‘90s, will have to argue hardness of
typical quantum systems with “generic” interference patterns

* Unlike BosonSampling, no known average-case hardness for RCS
* Without average-case hardness, there’s no evidence that generic
interference patterns cannot be reproduced classically
Main result: Provide a theoretical foundation backing RCS

* Prove average-case hardness for RCS: computing output probabilities for
most random circuits is as hard as computing them in the worst-case

* Proof crucially uses error-correcting codes to infer worst-case probabilities
from typical output probabilities



Overview

* Our focus is on two perspectives
1. Establishing hardness using complexity theory
2. \Verification of supremacy via statistical tests



1. Establishing hardness using complexity
theory



Complexity theory basics

* P: Class of problems feasible for classical computer

* NP: Characterized by SAT problem: given boolean
formula is it satisfiable?

* #P: Generalization of NP to counting the number
of satisfying assignments to boolean formula




The classical hardness of quantum sampling

* Premise: given quantum circuit as input, exactly computing any particular
outcome probability is #P-hard

* But these probabilities are exponentially small and cannot be directly estimated

* However, this fact can be leveraged to prove that such quantum outcome
distributions cannot be classically sampled exactly [e.g., Terhal &
DiVincenzo’04, Bremner, Jozsa & Shepherd’10...]

* Key challenge: extend hardness of exact sampling results to hold in the
presence of experimental noise, modelled by closeness in total variation
distance

 Suffices to prove that it is #P-hard to additively estimate most quantum outcome
probabilities



BosonSampling hardness

BosonSampling Conjecture: Efficiently approximating 1-6 fraction of the outcome
probabilities of typical linear optical networks to within additive error +/M in is #P-hard

e Evidence

1. Average-case exact hardness (i.e., e=0 case)

2. Anti-concentration conjecture (unproven for BosonSampling)

* In a typical network, most outcome probabilities are reasonably large
* “Sanity check”

» “Signal is larger than the noise”: +&/M additive estimate can be used to recover (1 + €’)
multiplicative estimates

* Computing such multiplicative estimates on all outcomes (i.e., 6=0 case) is #P-hard
* But general case, where both £,6>0 is open, and defies all proof techniques

Proposal Average-caseexact( ) | Worst-case mult. Anti-concentration General (
Approximate ( )

BosonSampling #P-hard #P-hard ?




Random Circuit Sampling hardness

RCS Conjecture: Given as input random n qubit quantum circuit C, outputting an

efficient additive estimate a € | (91{¢ pO¥} §2=¢ 22 witibhopodladbililiyyl 16 fvree chimideeod {C
Eh dhrtdtamek v) is #P-hard

Proposal Average case exact | Worst-case Mult. Anti-concentration General
Approximate ( ( >0)

BosonSampling #P-hard #P-hard ?
RCS wrt 2D grid, depth ? #P-hard Yes (e.g., [BH 13 ?
i g p v (Today!) (e.g. [ 1)

* But what good is anti-concentration without average-case hardness?

* Anti-concentration tells us most output probabilities are somewhat large

* For these large probabilities, an additive estimate suffices to prove a multiplicative
estimate

* So this only allows us to compute multiplicative estimates on average



Average-case hardness for permanent of
matrices over finite fields [Lipton ‘91]

* Permanent of n x n matrix is (worst-case) #P-hard [Valiant ‘79]

per(X] = > [[Xi-0

cesS, i=1 . . .
Algebraic property? permanent is a degree n polynomial on n? variables

Lipton shows “worst-to-average case reduction”
* Need compute permanent of worst-case matrix X
* But we only have access to algorithm O that correctly computes most permanents

* ie.
’ Pr |O)=perlY||>1— ———
L P 00 =perlY]) 21— gms
Choose n+1 fixed non-zero points t,t,.. 1,1 €F,and uniformly random matrix R
Consider line A(t)=X+tR
* Observation 1 “marginal property”: for each i, A(t;) is a random matrix over [F "*"
* Observation 2: “univariate polynomial”: per[A(t)] is a degree n polynomial in t

But now these n+1 evaluation points uniquely define the polynomial, so use error-
correction (noisy polynomial interpolation) and evaluate per[A(0)]=per[X]



Main result: Worst-to-average-case RCS reduction

» Algebraic property: much like permanent, fixed amplitudes of random
guantum circuits have low-degree polynomial structure
 Consider circuit C=C_C C,

m>~m-1+-*
 Structure comes from Feynman path integral:
(0"|clom) = > A0™MComlym) Yim| Con1lym—1)..-(y2|C1]0")

y27y37"'7ym€{071}n

* This is a polynomial of degree m in the gate entries of the circuit
* So the output probability  [(0"|C[0™)]* is a polynomial of degree 2m



Worst-to-Average Reduction-Attempt 1: Copy
Lipton’s proof

* Our case: want to compute |{0"|C|0")|? for worst case C
* But we only have the ability to compute output probabilities for most circuits

* Recall: Lipton wanted to compute per[X], choose random R,
considered line A(t)=X+tR

* Problem: can’t just perturb gates in a random linear direction
(quantum circuits aren’t linear... i.e., if A is unitary, B is unitary, A+tB is

not necessary unitary)



New approach to scramble gates of fixed circuit
* Choose and fix {H };c.,; Haar random gates

* Now consider new circuit C’=C"_C’_ ,...C’; so that for each gate C".=C.H.
* Notice that each gate in C’ is completely random — “marginal property”

 But recall, Lipton also made use of “univariate polynomial structure”

* Main idea: “Rotate back towards C by small angle 6” (i.e., C’.=C.H.e ")
* If =1 the corresponding circuit C’'=C, and if 6 = small, each gate is close to Haar

random
* Now take several non-zero but small 6 and apply polynomial interpolation...



This is still not the “right way” to scramble!

* Problem: e"® is not polynomial in 6

* Solution: take fixed truncation of Taylor series for e ®

* So each gate entry is a polynomial in 6 and so is |{(0"| C|0")]?
* Now interpolate and compute p(1)= |{0"|C|0"})|?

* This shows average-case exact hardness for a different circuit
distribution!

e But we show that approximate hardness over this “truncated” circuit
distribution is equivalent to the original RCS hardness conjecture (i.e.,
approximate average-case hardness over the gatewise Haar distribution)



2. Using statistical tests to verify RCS



Verifying RCS in the NISQ era

e Constraint: can only take a small (poly(n)) number of samples from
the quantum device

* Unique tool in NISQ Era: It’s feasible to take “modestly exponential”
classical computation time per sample

* Challenge: Complexity arguments require closeness in total variation
distance. But we can’t hope to unconditionally verify this with few
samples from the device.



Candidate test for verifying RCS: cross-entropy
[Boixo et. al., 16]

* We want to compute:

}: 1 1
CE pdevapzd pdev lOg p— IE . log (_)
pzd( ) Pd Pid

* Note this can be well- apprOX|mated take samples x,,x,,...,X,:

* For each, use exp(n) classical processing time to compute log of ideal
probabilities!

* Mean converges to expectation with k=poly(n) samples from the device by
Chernoff

* Then accept if score is sufficiently close to the expected ideal cross-
entropy, which can be calculated




Why might one believe this verifies RCS?

* This is a “one-dimensional projection” of observed data
* Does not verify closeness in total variation distance directly
* (Theorem: exist distributions far in total variation which score well on CE)
e [Boixo et al. "16]: Assume that
Pdev =Py + (1-0) Id

In this case, achieving near-perfect cross-entropy certifies closeness in
total variation distance



Deeper reasons to believe in Cross-Entropy

e This assumption can be weakened, if we “merely believe”:
*  H(pge,)2 H(pig)

* Pinsker’s inequality:

[Pdev — Pid| TV < \/%’pdev — Pid| KL

* Where | PdevPid | KL=CE(pdewpid)'H(pdev)
 So if we find cross-entropy €-close to ideal, we’ve certified closeness
in total variation distance to error O(g1/?)

* This assumption makes sense if you think your device is corrupted by
random errors



Removing assumption: Is scoring high on CE
“intrinsically” hard?

* The output distributions of RCS are “Porter-Thomas”
*  Prlp,=qa/N] =e™
 This “shape” of the distribution is *not* a signature of quantum effects!

*  We show the “shape” can be reproduced classically (e.g., by Poisson processes)

 However, pairs of distributions scoring highly on CE test share similar
“heavy” outcomes
 This intuition was sharpened by a recent proposal of Aaronson & Chen called
HHOG”
: 44 : : 7
Ep,.,0(piq is “heavier than median”)

Scoring above some threshold conjectured to be intrinsically hard
* But don’t know how to give complexity theoretic evidence



Introducing... Binned Output Generation (BOG)

* Why not use the same number of
samples and take a multidimensional
projection?

* Consider dividing the [0,1] interval into
poly(n) bins

* Observe k samples x,,x,,...,x, and
calculate ideal probalbl ities for each
sample on supercomputer

* Accept if the number of outcome
probabilites in each bin are
approximately equal to expected
frequency in each bin

* Verifies cross-entropy and HOG —
inherits the advantages of both (if you
believe in either...)
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