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Interest in quantum computing is exploding
• Huge media hype:

• Enormous industry interest for quantum computing
• Google, Microsoft, IBM, Intel, Alibaba, Baidu, …

• Even new start-ups “bridging” industry and academia
• IonQ/UMD, Quantum Circuits Inc/Yale, Zapata/Harvard…

Martinis group: Google/UCSB



Why is there so much hype?

• Experimental advances are leading to the “Noisy Intermediate Scale 
Quantum” (NISQ) era
• Several experimental groups will soon implement noisy 50-70 qubit systems 

[e.g., Google/UCSB, IBM, U. Maryland]

• No error-correction – can’t run many quantum algorithms

• But also can’t be naively simulated by classical computers

• This has greatly accelerated the development of full-scale quantum 
computing

• Major challenge is algorithmic: need to understand how powerful 
these devices are!



A first step: “Quantum Supremacy”

• Quantum Supremacy: A practical 
demonstration of a quantum computation 
that is prohibitively hard for classical 
computers
• Needs to be experimentally feasible 
• Need theoretical evidence for hardness (i.e. 

problem couldn’t be solved efficiently on classical 
computer)
• Necessitates computational complexity theory

• Like early quantum algorithms, no need to be 
useful!

• Stepping stone to scalable, fault tolerant, 
universal quantum computers
• But it’s much more than that!



Importance of quantum supremacy: 
foundations of computation
• Quantum computers challenge Extended Church-Turing thesis: 

everything feasibly computable in the physical world is efficiently 
computable by a probabilistic Turing machine
• Recursive Fourier Sampling [Bernstein-Vazirani ’93] 
• Simon’s algorithm [Simon’94]
• (Not practically useful!)

• Shor’s factoring algorithm [Shor’94]
• (Similar ideas; great practical use!)

• Quantum supremacy: an experimental violation of the ECT!



Importance of quantum supremacy: 
validating quantum physics
• Exponential growth arguably the most counter-intuitive 

aspect of quantum mechanics.
• Is the exponential description of a quantum state really 

necessary?
• New limit in which to test physics: high complexity.
• Difficulty: how to verify something that’s exponentially 

complex?



Existing quantum supremacy proposals

Broadly speaking, fall into two categories:
1. Theoretically driven proposals with good evidence for hardness, but 

which are not yet experimentally feasible at sufficiently large scale 
• e.g., BosonSampling [Aaronson & Arkhipov ‘11]

2. Experimentally driven proposals which will be realizable in the near 
term, but do not yet have as strong theoretical evidence of hardness
• e.g., Random Circuit Sampling proposal of the Google/UCSB group [Boixo et. al. 

‘16]



Our results

1. We provide strong theoretical backing to the leading 

experimental candidate for quantum supremacy: Random 

Circuit Sampling [Google/UCSB group: Boixo et al ‘16]

2. We also study how to verify these devices, and propose a new 

verification measure which is “optimal”



1. Quantum supremacy from interference



Quantum computing and interference
• Fundamental difference between quantum and randomized 

classical computation: interference

• This exponential cancellation is critical ingredient for all quantum 
speedups
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90’s quantum interference patterns are hard to 
implement!
• These algorithms solve decision problems (e.g., Shor’s algorithm)
• The speedups come from carefully engineered interference patterns 

with large amounts of constructive and destructive interference 

This behavior is far from “typical”.
It’s hard to make this happen in the lab!!

“Proving a quantum system’s computational power by having it factor integers is 
a bit like proving a dolphin’s intelligence by teaching it to solve arithmetic 
problems” [Aaronson & Arkhipov ‘11]



NISQ interference patterns are generic!

• Reasonably flat output distributions
• Supremacy proposal:  Given random quantum 

circuit, sample from distribution close to its 
ideal output distribution 
• Our question: How hard is this problem?
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How to prove hardness of sampling?
• Premise: Given quantum circuit as input, multiplicatively approximating 

any outcome probability is #P-hard
• Whereas approximating classical outcome probabilities is in BPPNP⊆"3
• But these probabilities are exponentially small and cannot be directly estimated

• Key point:

Our question: How hard is approximating most output probabilities of 
quantum circuits? 

Classical Sampling
Approximating 

output 
probabilities

"3-reduction

[AA’11 based on 
Stockmeyer ‘83]
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If it’s #P-hard then classical sampler implies PH collapse, by Toda’s thm



BosonSampling proposal [Aaronson & 
Arkhipov’11]
• Task: sample from the outcome distribution of 

a random linear optical quantum circuit
• Output probabilities of random linear optical 

circuits proportional to the permanent of 
matrices with iid Gaussian entries
• Key point: Permanent has a worst-to-average 

case reduction, and so is #P-hard to compute 
on average [AA’11, building on Lipton ‘91]
• Open question: extend exact average-case 

hardness to approximate average-case 
hardness

Photo credit: X.-L. Wang et al. (2016)



• Yet to see sufficiently large experiments to test Extended Church 
Turing thesis
• Current experiments: 6 photon experiments [O’Brien et. al., ’16]
• Recent classical simulation algorithms indicate need ~50 photons 

[e.g., Clifford & Clifford ‘17, Neville et. al.’17]

But BosonSampling seems hard to 
experimentally implement… 



Random Circuit Sampling [e.g., Boixo et. al., ‘16]
• Task: sample from the output distribution of a 

random quantum circuit
• Generate a quantum circuit C on n qubits on a 2D 

lattice, with d=O(n) layers of Haar random nearest-
neighbor gates

• Start with |0n〉 input state and measure in 
computational basis

• Experimentally compelling: 50 (even 72?) qubits 
coming soon [Google/UCSB]
• RCS Conjecture: #P-hard to estimate most output 

probabilities of random quantum circuit
• But unlike BosonSampling, no connection to 

permanents
• Missing: average-case hardness!

Photo Credit: 
Michael Fang



2. Main result: Average-case hardness for RCS



Average-case hardness for permanent of 
matrices over finite fields [Lipton ‘91]
• Permanent of n x n matrix is (worst-case) #P-hard [Valiant ‘79]

• Algebraic property: permanent is a degree n polynomial on n2 variables  
• Lipton shows “worst-to-average case reduction”

• Need compute permanent of worst-case matrix X
• But we only have access to algorithm that correctly computes most permanents

• Choose n+1 fixed non-zero points t1,t2,…,tn+1∈"q and uniformly random matrix R
• Consider line A(t)=X+tR

• Observation 1 “marginal property”: for each i, A(ti) is a random matrix over "q
n x n

• Observation 2: “univariate polynomial”: per[A(t)] is a degree n polynomial in t

• But now these n+1 evaluation points uniquely define the polynomial, so use 
error-correction (noisy polynomial interpolation) and evaluate per[A(0)]=per[X]

per[X] =
X
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RCS also has polynomial structure

• Algebraic property: Fixed amplitudes of random quantum circuits have 
low-degree polynomial structure
• Consider circuit C=CmCm-1…C1
• Structure comes from Feynman path integral:

• This is polynomial of degree m in the gate entries of the circuit
• Output probability is polynomial of degree 2m
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Worst-to-Average Reduction-Attempt 1:  Copy 
Lipton’s proof
• Our case: want to compute |〈0n|C|0n〉|2 for worst case C

• But we only have the ability to compute output probabilities for most circuits

• Recall: Lipton wanted to compute per[X], choose random R, 
considered line A(t)=X+tR

• Problem:  can’t just perturb gates in a random linear direction 
(quantum circuits aren’t linear… i.e., if A is unitary, B is unitary, A+tB is 
not necessary unitary)



New approach to scramble gates of fixed circuit

• Choose {Hi}i∈[m] Haar random gates 
• Now consider new circuit C’=C’mC’m-1…C’1 so that for each gate C’i=CiHi

• Notice that each gate in C’ is completely random – “marginal property”
• But no univariate polynomial structure connects worst-case circuit C with 

the new circuit C’ !!



Correlating via quantumness

• We need the analogue to Lipton’s “univariate polynomial structure”

• Uniquely quantum capability: Implementing a fraction of a gate!

• i.e., if G is a quantum gate then G=eig where g=log G

• Can implement eigθ where θ is a small angle

• Main idea: “Implement tiny fraction of Hi
-1” (i.e., C’i=CiHie

-ihiθ)

• If θ=1 the corresponding circuit C’=C, and if θ ≈ small, each gate is close to 

Haar random

• Now take several non-zero but small θ and apply polynomial interpolation…



This is still not the “right way” to scramble!
• Problem: rotation back by angle θ isn’t low-degree polynomial in θ

• Because e-ihiθ is not polynomial in θ

• Solution: take fixed truncation of Taylor series for e-ihiθ

• i.e., instead of C’i=CiHie-ihiθ each gate is now C’i=CiHi∑"#$% ('()* +)-
"!

• So each gate entry is a polynomial in θ and so is |〈0n|C|0n〉|2 by path integral
• Now interpolate and compute p(1)= |〈0n|C|0n〉|2

• This shows average-case exact hardness for a (very slightly) different circuit 
distribution! 
• But we show that approximate hardness over this “truncated” circuit distribution is 

equivalent to the original RCS hardness conjecture (i.e., approximate average-case 
hardness over the gatewise Haar distribution)

P(C) P’(C)

2-n/poly
2-n/exp



3. Using statistical tests to verify RCS



Verifying RCS in the NISQ era

• Compromise: OK with exponential postprocessing time on 
supercomputer to compute “a few” ideal output probabilities for 
“intermediate” size quantum computers (n=50 qubits)
• Constraint:  can only take a small (poly(n)) number of samples from 

the quantum device
• Challenge: Complexity arguments require closeness in total variation 

distance. But we can’t hope to unconditionally verify this with few 
samples from the device.



Candidate test for verifying RCS: cross-entropy 
[Boixo et. al., 16]
• Proposal is to compute:

• Note this can be well-approximated in few samples
• Use device to output samples x1,x2,…,xk

• For each, use exp(n) classical processing time to compute log of ideal probabilities!
• Mean converges to expectation with k=poly(n) samples from the device by Chernoff

• Then accept if score is sufficiently close to the expected ideal cross-entropy, 
which can be calculated

CE(pdev, pid) =
X

x

pdev(x) log
1

pid(x)



Why might one believe this verifies RCS?

• This is a “one-dimensional projection” of observed data
• Does not verify closeness in total variation distance directly
• (Theorem: exist distributions score well on CE but are far in total variation)
• [Boixo et al. ’16]: Assume that

⍴dev =⍺⍴id + (1-⍺) Id
In this case, achieving near-perfect cross-entropy certifies closeness in 
total variation distance



Deeper reasons to believe in Cross-Entropy

Claim: If Cross-Entropy is close to ideal and H(pdev)≥ H(pid), then the 
output distribution is close to ideal in total variation distance

Proof:
• Pinsker’s inequality: 

• Where |pdev-pid|KL=CE(pdev,pid)-H(pdev)

• So if we find cross-entropy ε-close to ideal, we’ve certified closeness 
in total variation distance to error O(ε1/2)
• This assumption makes sense if you think your device is corrupted by 

random errors

|pdev � pid|TV 
r

1

2
|pdev � pid|KL



More on Cross-Entropy

• The output distributions of RCS are “Porter-Thomas”
• Pr[px = q/N] = e-q

• This “shape” of the distribution is not a signature of quantum effects
• Can be reproduced classically (e.g., by Poisson processes)

• However, pairs of distributions scoring highly on CE test share similar 
“heavy” outcomes
• This intuition was sharpened by a recent proposal of Aaronson & Chen called “HOG”

• Scoring above some threshold conjectured to be intrinsically hard
• But don’t know how to connect to well-studied complexity assumptions



A better verification method:
• To compute cross-entropy or HOG, you take a lot of data, and 

reduce it to a single number

• Why not use more of your data to have a better verification 
procedure?

• We show that you can create a verification procedure with the 
same data, which verifies both cross-entropy and HOG – so 
inherits advantages of both (if you believe either…)



Introducing…Binned Output Generation (BOG)

• Consider dividing the [0,1] interval 
into poly(n) bins
• Observe k samples x1,x2,…,xk and 

calculate ideal probabilities for each 
sample on supercomputer
• Accept if the number of outcome 

probabilites in each bin are 
approximately equal to expected 
frequency in each bin (from P-T)
• Optimal use of your experimental 

data, if you assume the least 
significant bits of the ideal output 
probabilities are irrelevant to 
supremacy



Conclusions

• Average case hardness gives evidence that circuit sampling hard even 
for random circuits which exhibit generic interference patterns. 

• For sufficiently small supremacy experiments we can verify supremacy if 
we make strong enough assumputions about the device output 
distribution: e.g., H(dev) ≥H(ideal).



Thanks!


