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Interest in quantum computing is exploding

* Huge media hype:
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1 and Tencent jockey for position in the development of quantum

China’s race for the mother of all supercomputers just

BY ARISTOS GEORGIOU ON 3/8/18 AT 9:22 AM Baidu, Alibab:

ssssssss

Google says Bristlecone chip
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* Enormous industry interest for qguantum computing
* Google, Microsoft, IBM, Intel, Alibaba, Baidu, ...

* Even new start-ups “bridging” industry and academia
* lonQ/UMD, Quantum Circuits Inc/Yale, Zapata/Harvard...

Martinis group: Google/UCSB



Why is there so much hype?

e Experimental advances are leading to the “Noisy Intermediate Scale
Quantum” (NISQ) era

* Several experimental groups will soon implement noisy 50-70 qubit systems
[e.g., Google/UCSB, IBM, U. Maryland]

* No error-correction — can’t run many quantum algorithms
* But also can’t be naively simulated by classical computers

* This has greatly accelerated the development of full-scale quantum
computing

* Major challenge is algorithmic: need to understand how powerful
these devices are!



A first step: “Quantum Supremacy”

* Quantum Supremacy: A practical
demonstration of a quantum computation
that is prohibitively hard for classical
computers

* Needs to be experimentally feasible

* Need theoretical evidence for hardness (i.e.
problem couldn’t be solved efficiently on classical
computer)

* Necessitates computational complexity theory

* Like early quantum algorithms, no need to be
useful!

 Stepping stone to scalable, fault tolerant,
universal quantum computers

e But it’s much more than that!
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'‘Quantum supremacy will soon be
ours!’, says Google as it reveals 72-
qubit quantum chip

Don't panic: 'supremacy' is the point at which
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Google scientist Marissa Giustina installs a Bristlecone chip




Importance of quantum supremacy:
foundations of computation

* Quantum computers challenge Extended Church-Turing thesis:
everything feasibly computable in the physical world is efficiently
computable by a probabilistic Turing machine

* Recursive Fourier Sampling [Bernstein-Vazirani 93]
e Simon’s algorithm [Simon’94]

* (Not practically useful!)
» Shor’s factoring algorithm [Shor’94]

* (Similar ideas; great practical use!)

* Quantum supremacy: an experimental violation of the ECT!



Importance of quantum supremacy:
validating quantum physics

Exponential growth arguably the most counter-intuitive

aspect of quantum mechanics.

* Isthe exponential description of a quantum state really
necessary?

New limit in which to test physics: high complexity.

Difficulty: how to verify something that’s exponentially
complex?



Existing quantum supremacy proposals

Broadly speaking, fall into two categories:

1. Theoretically driven proposals with good evidence for hardness, but
which are not yet experimentally feasible at sufficiently large scale
* e.g., BosonSampling [Aaronson & Arkhipov ‘11]

2. Experimentally driven proposals which will be realizable in the near
term, but do not yet have as strong theoretical evidence of hardness

 e.g., Random Circuit Sampling proposal of the Google/UCSB group [Boixo et. al.
‘16]



Our results

1. We provide strong theoretical backing to the leading
experimental candidate for quantum supremacy: Random
Circuit Sampling [Google/UCSB group: Boixo et al ‘16]

2. We also study how to verify these devices, and propose a new
verification measure which is “optimal”



1. Quantum supremacy from interference



Quantum computing and interference

* Fundamental difference between quantum and randomized
classical computation: interference

Randomized classical Quantum

Initial state Initial state

Accept state Accept state

Accepts with probability: 5/6 Accepts with probability: |-i/3]?

* This exponential cancellation is critical ingredient for all quantum
speedups



90’s quantum interference patterns are hard to
implement!

* These algorithms solve decision problems (e.g., Shor’s algorithm)

* The speedups come from carefully engineered interference patterns
. with large amounts of constructive and destructive interference

Output probability

0.8
0.6
8'; This behavior is far from “typical”.

R — — It’s hard to make this happen in the lab!!

1 2 3 4

“Proving a quantum system’s computational power by having it factor integers is
a bit like proving a dolphin’s intelligence by teaching it to solve arithmetic
problems” [Aaronson & Arkhipov ‘11]



NISQ interference patterns are generic!

* Reasonably flat output distributions

e Supremacy proposal: Given random quantum
circuit, sample from distribution close to its
ideal output distribution

* Our question: How hard is this problem?
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How to prove hardness of sampling?

* Premise: Given quantum circuit as input, multiplicatively approximating
any outcome probability is #P-hard
* Whereas approximating classical outcome probabilities is in BPPNPCX,
* But these probabilities are exponentially small and cannot be directly estimated

* Key point:

Z,-reduction

Classical [AA’11 based on Approximating

Stockmeyer ‘83] output
probabilities

Sampling

Our question: How hard is approximating most output probabilities of
guantum circuits?

If it’s #P-hard then classical sampler implies PH collapse, by Toda’s thm



BosonSampling proposal [Aaronson &

Arkhipov'11]

* Task: sample from the outcome distribution of
a random linear optical quantum circuit

* Qutput probabilities of random linear optical
circuits proportional to the permanent of
matrices with iid Gaussian entries

* Key point: Permanent has a worst-to-average
case reduction, and so is #P-hard to compute
on average [AA’11, building on Lipton ‘91]

* Open question: extend exact average-case
hardness to approximate average-case
hardness

Photo credit: X.-L. Wang et al. (2016)




But BosonSampling seems hard to

experimentally implement...

* Yet to see sufficiently large experiments to test Extended Church
Turing thesis

* Current experiments: 6 photon experiments [O’Brien et. al., "16]

* Recent classical simulation algorithms indicate need ~50 photons
le.g., Clifford & Clifford ‘17, Neville et. al.17]



Random Circuit Sampling [e.g., Boixo et. al., ‘16]

 Task: sample from the output distribution of a
random quantum circuit “ “
* Generate a quantum circuit C on n qubits ona 2D

lattice, with d=0O(n) layers of Haar random nearest-
neighbor gates

e Start with |O") input state and measure in
computational basis

* Experimentally compelling: 50 (even 727?) qubits
coming soon [Google/UCSB]

* RCS Conjecture: #P-hard to estimate most output
probabilities of random quantum circuit

* But unlike BosonSampling, no connection to
permanents

* Missing: average-case hardness!

Photo Credit:
Michael Fang




2. Main result: Average-case hardness for RCS



Average-case hardness for permanent of
matrices over finite fields [Lipton ‘91]

* Permanent of n xn matrix is (worst-case) #P-hard [Valiant ‘79]

per(X] = > [[Xi-0

cesS, i=1

* Algebraic property: permanent is a degree n polynomial on n? variables

* Lipton shows “worst-to-average case reduction”
* Need compute permanent of worst-case matrix X
e But we only have access to algorithm that correctly computes most permanents

* Choose n+1 fixed non-zero points tl,tz,...,tn+16IFOI and uniformly random matrix R

* Consider line A(t)=X+tR
* Observation 1 “marginal property”: for each i, A(t)) is a random matrix over [F,"*"
* Observation 2: “univariate polynomial”: per[A(t)] is a degree n polynomial in t

* But now these n+1 evaluation points uniquely define the polynomial, so use
error-correction (noisy polynomial interpolation) and evaluate per[A(O)]=per[X]



RCS also has polynomial structure

* Algebraic property: Fixed amplitudes of random quantum circuits have
low-degree polynomial structure
 Consider circuit C=C_C_ ,...C,

 Structure comes from Feynman path integral:

Z (0™ [Cmlym) (Ym|Crn—1Ym—1)---(y2|C1]0™)

y27y37“')ym€{031}n

— Z Cm[onaym]Cm—l[ym7ym—1]“'Cl [y270n]

y2ay3)--'7ym€{071}n
* This is polynomial of degree m in the gate entries of the circuit

e Output probability is polynomial of degree 2m

(0"[C10™)



Worst-to-Average Reduction-Attempt 1: Copy
Lipton’s proof

* Our case: want to compute |{0"|C|0")|? for worst case C
* But we only have the ability to compute output probabilities for most circuits

* Recall: Lipton wanted to compute per[X], choose random R,
considered line A(t)=X+tR

* Problem: can’t just perturb gates in a random linear direction
(quantum circuits aren’t linear... i.e., if A is unitary, B is unitary, A+tB is

not necessary unitary)



New approach to scramble gates of fixed circuit

* Choose {H },,,) Haar random gates
* Now consider new circuit C'=C’ C’;...C’; so that for each gate C",=CH,

m>~ m-1°°"
* Notice that each gate in C’ is completely random — “marginal property”

* But no univariate polynomial structure connects worst-case circuit C with
the new circuit C' !l



Correlating via quantumness

* We need the analogue to Lipton’s “univariate polynomial structure”

* Uniquely quantum capability: Implementing a fraction of a gate!
* i.e., if G is a quantum gate then G=e'® where g=log G
* Can implement e®® where 0 is a small angle

* Main idea: “Implement tiny fraction of H'” (i.e., C'.=C:H.e ")
* If =1 the corresponding circuit C’=C, and if 6 = small, each gate is close to
Haar random
* Now take several non-zero but small 6 and apply polynomial interpolation...



This is still not the “right way” to scramble!

* Problem: rotation back by angle 0 isn’t low-degree polynomial in 6
* Because e"® is not polynomial in 6

* Solution: take fixed truncation of Taylor series for e"® )
. —ih; @
* i.e., instead of C'=CH.e'"® each gate is now C’=CH, Ik<=1( l - :
* So each gate entry is a polynomial in 6 and so is I(O"ICIO")IIE'by path integral
* Now interpolate and compute p(1)= [{0"]C|O0")|?2
 This shows average-case exact hardness for a (very slightly) different circuit

distribution!

* But we show that approximate hardness over this “truncated” circuit distribution is
equivalent to the original RCS hardness conjecture (i.e., approximate average-case
hardness over the gatewise Haar distribution)

P(C) P’(C)
\ "

||
2"/poly 2"/exp




3. Using statistical tests to verify RCS



Verifying RCS in the NISQ era

 Compromise: OK with exponential postprocessing time on
supercomputer to compute “a few” ideal output probabilities for
“intermediate” size quantum computers (n=50 qubits)

* Constraint: can only take a small (poly(n)) number of samples from
the quantum device

* Challenge: Complexity arguments require closeness in total variation
distance. But we can’t hope to unconditionally verify this with few
samples from the device.



Candidate test for verifying RCS: cross-entropy
[Boixo et. al., 16]

* Proposal is to compute:

1 1
CE(Ddev; Did) = Z Pdev () log = Ep,., log <—>
- pida(x) Did
* Note this can be well-approximated in few samples
* Use device to output samples x;,X,,..., X
* For each, use exp(n) classical processing time to compute log of ideal probabilities!
* Mean converges to expectation with k=poly(n) samples from the device by Chernoff

* Then accept if score is sufficiently close to the expected ideal cross-entropy,
which can be calculated



Why might one believe this verifies RCS?

This is a “one-dimensional projection” of observed data
Does not verify closeness in total variation distance directly
(Theorem: exist distributions score well on CE but are far in total variation)
[Boixo et al. ’16]: Assume that
Pgev =0P;g *+ (1-at) Id

In this case, achieving near-perfect cross-entropy certifies closeness in
total variation distance



Deeper reasons to believe in Cross-Entropy

Claim: If Cross-Entropy is close to ideal and H(p,4.,)2 H(p,4), then the
output distribution is close to ideal in total variation distance

Proof:
* Pinsker’s inequality: .
‘pdev - pid‘TV S \/§’pdev — pid‘KL

* Where | PdevPid | KL=CE(pdewpid)'H(pdev)

 So if we find cross-entropy €-close to ideal, we’ve certified closeness
in total variation distance to error O(g/?)

* This assumption makes sense if you think your device is corrupted by
random errors



More on Cross-Entropy

* The output distributions of RCS are “Porter-Thomas”
* Prlp,=0a/N]=e"
* This “shape” of the distribution is not a signature of quantum effects

 Can be reproduced classically (e.g., by Poisson processes)

 However, pairs of distributions scoring highly on CE test share similar
“heavy” outcomes

 This intuition was sharpened by a recent proposal of Aaronson & Chen called “HOG”

E,, 6(piqis “heavier than median”)
' Pdev [
* Scoring above some threshold conjectured to be intrinsically hard

* But don’t know how to connect to well-studied complexity assumptions



A better verification method:

* To compute cross-entropy or HOG, you take a lot of data, and
reduce it to a single number

 Why not use more of your data to have a better verification
procedure?

* We show that you can create a verification procedure with the
same data, which verifies both cross-entropy and HOG — so
inherits advantages of both (if you believe either...)



Introducing...Binned Output Generation (BOG)

e Consider dividing the [0,1] interval
into poly(n) bins

* Observe k samples x,x,,...,x, and
calculate ideal probabilities for each
sample on supercomputer

* Accept if the number of outcome
probabilites in each bin are
approximately equal to expected
frequency in each bin (from P-T)

* Optimal use of your experimental
data, if you assume the least
significant bits of the ideal output
probabilities are irrelevant to
supremacy

pu(x;) for sample i

0.1

-1072

- 10—2

-1072

1072

sample number i

10



Conclusions

* Average case hardness gives evidence that circuit sampling hard even
for random circuits which exhibit generic interference patterns.

* For sufficiently small supremacy experiments we can verify supremacy if
we make strong enough assumputions about the device output
distribution: e.g., H(dev) >H(ideal).



Thanks!



