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“Quantum Supremacy”
• Goal: A practical demonstration of a 

quantum computation that is prohibitively 
hard for classical computers
• Needs to be experimentally feasible 
• Need theoretical evidence for hardness (i.e., 

problem couldn’t be solved efficiently on 
classical computer)

• Like early quantum algorithms, no need to be 
useful!

• Stepping stone to scalable, fault-tolerant, 
universal quantum computers
• But it’s much more than that!
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Importance of quantum supremacy: 
foundations of computation
• Experimental violation of the Extended Church-Turing thesis

• i.e., If we want to model efficient computation, we must consider quantum 
mechanics!

• Complements theoretical evidence given by earlier speedups (e.g., 
[Bernstein-Vazirani ’93][Simon’94][Shor ‘94])



Importance of quantum supremacy: 
validating quantum physics
• Exponential growth arguably the most counter-intuitive 

aspect of quantum mechanics.
• Is the exponential description of a quantum state really 

necessary?
• New limit in which to test physics: high complexity.
• Difficulty: how to verify something that’s exponentially 

complex?



Importance of quantum supremacy: 
validating near-term devices
• Quantum supremacy: necessary to have a large quantity of high 

quality qubits
• Achieving both is quite difficult experimentally

• In recent years, tools from quantum supremacy have become more 
and more central to experimental efforts in validating NISQ devices
• E.g., to “tuning qubits” and “diagnosing errors”
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Existing quantum supremacy proposals

Broadly speaking, fall into two categories:
1. Theoretically driven proposals 

• Special purpose devices with good evidence for hardness
• Are not yet experimentally feasible at sufficiently large scale 
• e.g., BosonSampling [Aaronson & Arkhipov ‘11]

2. Experimentally driven proposals
• Will be realizable in the near term, on the path to scalable quantum computing
• But do not yet have as strong theoretical evidence of hardness
• e.g., Random Circuit Sampling proposal of the Google/UCSB group [Boixo et. al. 

‘16]



Our results

1. We provide theoretical backing to the leading experimental 
candidate for quantum supremacy: Random Circuit Sampling 
[Google/UCSB group: Boixo et al ‘16]

2. We study verification, clarifying when existing proposals work 
to verify these devices



1. Quantum supremacy from average-case 
interference patterns



Interference is crucial for quantum algorithms

• Quantum speedups generally come from 
carefully engineered interference patterns 
with large amounts of constructive and 
destructive interference
• NISQ era: Random, average-case interference 

patterns
• Supremacy proposal:  Given random quantum 

circuit, sample from distribution close to its 
ideal output distribution 
• Our question: How hard is approximate 

sampling for classical computers?
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How to prove classical hardness of quantum 
sampling?
• Our goal: to show there’s no classical “approximate sampler” algorithm
• Reduction [AA’11]: Suffices to prove that approximating the output 

probability of most random quantum circuits is #P-hard
• Our question: Can we give evidence that this true?



BosonSampling [Aaronson & Arkhipov’11]

• Task: sample from the outcome distribution 
of a random linear optical quantum circuit
• Key point: Output probabilities of random 

linear optical circuits are permanents of 
random matrices
• Permanent has a worst-to-average case 

reduction, and so is #P-hard to exactly 
compute permanent of most random 
matrices [AA’11, building on Lipton ‘91]
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•We’ve yet to see sufficiently large experiments to test extended 
Church Turing thesis
• Further, it’s a special purpose device – not necessarily on path to 

universal scalable quantum computation

But BosonSampling seems hard to 
experimentally implement… 



Random Circuit Sampling [e.g., Boixo et. al., ‘16]
• Task: sample from the output distribution of a 

random quantum circuit
• Generate a quantum circuit C on n qubits on a 2D 

lattice, with d=n1/2 layers of Haar random nearest-
neighbor gates

• Start with |0n〉 input state and measure in 
computational basis

• Experimentally compelling: large systems of 
superconducting qubits coming soon [e.g., 
Google/UCSB]
• RCS Conjecture: #P-hard to estimate output 

probability of most random quantum circuits
• But unlike BosonSampling, no connection to 

permanents
• Missing: average-case hardness!
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Main result: Average-case exact hardness for 
RCS

• We prove: “Worst-case to average-case reduction” for exactly computing 
quantum output probabilities

• Provides a rigorous foundation for the classical hardness of RCS!
• Raises RCS to level of BosonSampling and has a property called anti-concentration 

[e.g., BHH’12, HBVSE’17, HM’18]
• Remaining hurdle: Extend exact to approximate average-case hardness.



Major ideas used in proof

• Goal: Use the ability to compute output probabilities of typical quantum 
circuits
• To compute output probability for worst-case C, |⟨0n|C|0n〉|2

• Want to “scramble” worst-case C so that it looks typical!
• First attempt:

• Choose {Hi}i∈[m] Haar random gates 
• Now take each gate in C and set Ci’=CiHi
• But now C’ is completely uncorrelated with C !!



Need to correlate many “random looking” circuits 
with worst-case circuit C

• Uses polynomial structure coming from the Feynman path 
integral and also the uniquely quantum ability to implement 
“small fraction of quantum gate”
• Pick many small angles θ
• For each θ consider the circuit C’ in which Ci’=CiHie-ihiθ

• Observation: Each circuit C’ individually looks random, but 
they are all correlated (can express each |⟨0n|C’|0n〉|2 as a 
fixed function of θ)
• Use ideas from polynomial interpolation to recover the 

output probability of worst-case C



2. Using statistical tests to verify RCS



Verifying RCS in the NISQ era

• Challenge: Need to develop a statistical measure to verify the RCS 
output distribution from samples of device, but…
• Constraint 1:  don’t know the output distribution (only given a description of 

circuit)
• Constraint 2:  can only take a small (poly(n)) number of samples from the 

quantum device

• Compromise: OK to use exponential postprocessing time on 
supercomputer to compute “a few” ideal output probabilities (doable for 
n=49 qubits)

• Complexity arguments require closeness in total variation distance. But 
we can’t hope to unconditionally verify this with few samples from the 
device.



A candidate test for verifying RCS: cross-entropy 
[Boixo et. al., 16]
• Proposal is to compute:

• This can be well-approximated in few samples using concentration of 
measure arguments!
• Then accept if score is sufficiently close to the expected ideal cross-

entropy, which can be calculated analytically

CE(pdev, pid) =
X

x

pdev(x) log
1

pid(x)



Why Cross-Entropy?

• This is a “one-dimensional projection” of observed data
• Does not verify closeness in total variation distance directly
• (Theorem: exist distributions score well on CE but are far in total variation)
• [Boixo et al. ’16]: Assume that

⍴dev =⍺⍴id + (1-⍺) Id
In this case, achieving near-perfect cross-entropy certifies closeness in 
total variation distance



Deeper reasons to believe in Cross-Entropy?

Claim: If Cross-Entropy is close to ideal and H(pdev)≥ H(pid), then the 
output distribution is close to ideal in total variation distance

This assumption would follow from certain noise models (e.g., local 
depolarizing noise) but not from others (e.g., correlated noise, 
erasure channel etc…)

Proof:
• Pinsker’s inequality: 

• Where |pdev-pid|KL=CE(pdev,pid)-H(pdev)
• So if we find cross-entropy ε-close to ideal, we’ve certified closeness 

in total variation distance to error O(ε1/2)

|pdev � pid|TV 
r

1

2
|pdev � pid|KL



More on verification
• The output distributions of RCS are “Porter-Thomas”

• Pr[px = q/N] = e-q

• This is not a signature of quantum effects
• Can be reproduced classically (e.g., by Poisson processes)

• However, pairs of distributions scoring highly on CE test share similar 
“heavy” outcomes
• This intuition was sharpened by a recent proposal of Aaronson & Chen called “HOG”

• Scoring above some threshold conjectured to be intrinsically hard
• Can be connected to nonstandard complexity assumptions [AC’16]
• But don’t know how to connect to well-studied complexity assumptions

• Can create a generalized measure which simultaneously verifies both Cross-
Entropy and HOG which we call “Binned Output Generation” and is, in some 
sense “optimal”



Conclusions

• Average case hardness gives evidence that circuit sampling hard even 
for random circuits which exhibit generic interference patterns. 

• For sufficiently small supremacy experiments we can verify supremacy if 
we make strong enough assumptions about the device output 
distribution: e.g., experiment only increases entropy



Open Questions
Missing piece: extend hardness of exactly computing typical quantum output 
probability to approximate case (this is open for all supremacy proposals!)

At what system size should we conclude “quantum supremacy”?  What is the 
importance of implementing a particular system size, like 49 qubits?

Can recent classical heuristics for RCS simulation, such as those of the Alibaba 
group [Chen et. al., ‘18]  be used to verify RCS experiments for larger system 
sizes?



Thanks!


