
Pseudorandom generators and the BQP vs. PH problem

Bill Fefferman∗ Chris Umans†

October 13, 2010

Abstract

It is a longstanding open problem to devise an oracle relative to which BQP does not lie in the
Polynomial-Time Hierarchy (PH). We advance a natural conjecture about the capacity of the Nisan-
Wigderson pseudorandom generator [NW94] to fool AC0, with MAJORITY as its hard function. Our
conjecture is essentially that the loss due to the hybrid argument (which is a component of the standard
proof from [NW94]) can be avoided in this setting. This is a question that has been asked previously in
the pseudorandomness literature [BSW03]. We then make three main contributions:

1. We show that our conjecture implies the existence of an oracle relative to which BQP is not in the
PH. This entails giving an explicit construction of unitary matrices, realizable by small quantum
circuits, whose row-supports are “nearly-disjoint.”

2. We give a simple framework (generalizing the setting of Aaronson [Aar10a]) in which any effi-
ciently quantumly computable unitary gives rise to a distribution that can be distinguished from
the uniform distribution by an efficient quantum algorithm. When applied to the unitaries we con-
struct, this framework yields a problem that can be solved quantumly, and which forms the basis
for the desired oracle.

3. We prove that Aaronson’s “GLN conjecture” [Aar10a] implies our conjecture; our conjecture is
thus formally easier to prove. The GLN conjecture was recently proved false for depth greater than
2 [Aar10b], but it remains open for depth 2. If true, the depth-2 version of either conjecture would
imply an oracle relative to which BQP is not in AM, which is itself an outstanding open problem.

Taken together, our results have the following interesting interpretation: they give an instantiation of the
Nisan-Wigderson generator that can be broken by quantum computers, but not by the relevant modes of
classical computation, if our conjecture is true.

∗Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125. Supported by IQI.
†Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA 91125. Supported by NSF CCF-0846991.

1 Introduction

Let Ut denote a random variable uniformly distributed on t-bit strings. A pseudorandom generator (PRG)
is a function

f : {0, 1}t → {0, 1}m

that stretches a short “seed” into a longer output string, with the property that f(Ut) is computationally
indistinguishable from the uniform distribution.

There is a vast literature constructing PRGs that achieve computational indistinguishability against a
wide variety of computational models (e.g. small circuits, small nondeterministic circuits, small branching
programs, small constant-depth circuits). These constructions are typically “hardness vs. randomness”
tradeoffs in the sense that they make use of a hard function (either unconditionally hard, or hard conditioned
on a complexity assumption), and their proof of correctness takes the form of a reduction that transforms
a computationally efficient distinguisher into an efficient algorithm for the hard function (thereby deriving
a contradiction). This transformation entails the use of the hybrid argument [GM84, Yao82] which incurs
a loss of a factor 1/m in going from a distinguisher (with gap ε) to a predictor (with advantage ε/m) and
from there to an efficient algorithm (with advantage ε/m).

A question that has been raised in the pseudorandomness literature is whether this loss of a factor of 1/m
can be avoided (for an explicit framing of this question, and a discussion of its motivation, see [BSW03]).
In certain settings, the answer is known to be “yes” – when the notion of “efficient” is small PH circuits,
or bounded-width branching programs [BSW03]. In the present paper, we identify a setting in which this
question has surprising connections to a central unresolved question in quantum complexity: whether there
exists an oracle relative to which BQP is not in the PH.

Our setting is a familiar one: we will work with the ubiquitous Nisan-Wigderson PRG [NW94], against
AC0 circuits, with MAJORITY as its hard function. We need a precise statement for the discussion below,
which can be given via two standard definitions:

Definition 1.1 ([NW94]). A set family D = {S1, S2, . . . , Sm} is an (`, p) design if every set in the family
has cardinality `, and for all i 6= j, |Si ∩ Sj | 6 p.

Definition 1.2 ([NW94]). Given a function f : {0, 1}` → {0, 1} and an (`, p) designD = {S1, S2, . . . , Sm}
in a universe of size t, the function NW f

D : {0, 1}t → {0, 1}m is given by

NW f
D(x) =

(
f1(x|S1

), f2(x|S2
), f3(x|S3

), . . . , fm(x|Sm
)
)
,

where each fi is the function f with a fixed set of its inputs negated1, and x|S denotes the projection of x to
the coordinates in the set S.

Generally speaking, the function NW f
D is a PRG against a class of distinguishers as long as f is hard

on average for that class of distinguishers. Recall that the majority function on ` bits is known to be hard
for AC0: no polynomial-size, constant-depth circuit can compute majority correctly on more than a 1/2 +
Θ(1/

√
`) fraction of the inputs [Smo93], and this is tight, since the function that simply outputs the first

bit of the input is correct on a random input with probability 1/2 + Θ(1/
√

`). We make the following
quantitative conjecture:

1The standard setup has each fi = f ; we need the additional freedom in this paper for technical reasons. We know of no settings
in which this alteration affects the analysis of the NW generator.

1

Conjecture 1. Let D = {S1, S2, . . . , Sm} be an (`,O(1))-design in a universe of size t 6 poly(`), with
m 6 poly(`). Then for every constant-depth circuit of size at most poly(m),

|Pr[C(Ut+m) = 1]− Pr[C(Ut, NW MAJORITY
D (Ut)) = 1]| 6 o(1).

By the standard argument from [NW94, Nis92], a distinguishing circuit C with gap ε can be converted
to a predictor with advantage ε/m and then a slightly larger circuit that computes MAJORITY with success
rate 1/2 + ε/m. Thus the above statement is true for m 6 o(

√
`); if the 1/m loss from the hybrid argument

can be avoided (or reduced), it would be true for m as large as poly(`) (and even larger) as we conjecture is
true. In Section 6 we discuss intuition supporting this conjecture that relates specifically to the hardness of
MAJORITY for AC0.

This paper contains three main results, which together make Conjecture 1 interesting and worthy of
further study:

• We show that our conjecture implies the existence of an oracle relative to which BQP is not in the PH,
and would thus resolve a major question in quantum complexity. We are encouraged by the fact that
our conjecture is recognizable as a natural question in pseudorandomness that has been previously
and independently studied (e.g., in [BSW03]).

The crucial component in showing that our conjecture is sufficient for the existence of an oracle
relative to which BQP is not in the PH, is an explicit construction of unitary matrices whose row-
supports form an (`, p)-design. We give such a construction and show how to realize these matrices
with small quantum circuits in Section 4. This is the technical core of the paper.

• We generalize the setting of [Aar10a] (which proposed a so-called forrelated distribution as one that
is easy to distinguish from uniform by a quantum computer, but possibly hard for AC0) to a simple
framework in which any efficiently quantumly computable unitary U gives rise to a distribution that
can be distinguished from uniform by a quantum computer (and Aaronson’s setup is recovered by
choosing U to be a DFT matrix).

Together with our construction of explicit unitaries whose row-supports form an (`, p)-design, this
framework has the following interesting interpretation: it gives an instantiation of the Nisan-Wigderson
generator that can be broken by quantum computers, but not by the relevant modes of classical com-
putation, if Conjecture 1 is true.

Also of independent interest is the fact the unitaries that form the basis of our quantum algorithms
don’t seem to resemble the DFT matrices for problems in the Hidden Subgroup framework, or even
the few other unitaries used in known quantum algorithms. But they possess natural extremal com-
binatorial (as opposed to algebraic) properties, and we wonder if they can be useful elsewhere in the
quantum realm.

• We show that the “Nisan-Wigderson” distribution (Ut, NW MAJORITY
D (Ut)) is ε-almost k-wise inde-

pendent, in the sense of Aaronson [Aar10a], whose “GLN conjecture” asserted that all such distribu-
tions fool AC0; a depth-3 counterexample was later found [Aar10b]. Whether all such distributions
fool depth-2 AC0 remains open. A distribution in our general framework (thus efficiently quantumly
distinguishable from uniform) that fools depth-2 AC0 would imply an oracle relative to which BQP
is not in AM, a weaker (and still unresolved) version of the BQP vs. PH problem. Thus there are
two potential routes to resolving this weaker version of the main problem (the depth-2 version of our
conjecture, and the depth-2 version of the GLN conjecture); ours is formally easier, and arguably

2

conceptually easier because its connection to the pseudorandomness literature suggests initial lines of
attack.

Finally, since [Aar10a] has shown that the classes SZK and BPPpath require exponentially many
queries to distinguish ε-almost k-wise independent distributions from uniform, our constructions uncondi-
tionally yield oracles relative to which BQP does not lie in either of these classes (and MA as well, since
MA ⊆ BPPpath), just as Aaronson’s construction does.

1.1 The BQP vs. PH question

The quest for an oracle relative to which BQP is not in the PH dates to the foundational papers of the field;
the question was first asked by Bernstein and Vazirani [BV93] in the early 1990’s. They also gave an oracle
problem, RECURSIVE FOURIER SAMPLING, that is regarded as a promising candidate (but there have been
as yet no real inroads on a potential proof). Currently, oracles are known relative to which BQP is not in
MA [Wat00], but no relativized worlds are known in which BQP is not in AM. Obtaining an oracle relative
to which BQP is not in the PH thus represents a stubborn, longstanding and fundamental problem whose
resolution would help clarify the relationship between BQP and classical complexity classes. In recent
progress, Aaronson [Aar10a] devised a relation oracle problem that lies in the function version of BQP
but not in the function version of the PH, but this still leaves the original problem open. Aaronson’s work
[Aar10a] also has a detailed account of the many motivations for revisiting (and hopefully resolving!) this
problem, and we refer the interested reader to the introduction of [Aar10a] for many more details.

In this paper we will find it convenient to speak almost exclusively about the “scaled down” version of
the problem, which is equivalent via the well-known connection between PH and AC0. In it, the goal is
to design a promise problem (rather than an oracle) that lies in (promise)-BQLOGTIME but not (promise)-
AC0. We will drop the cumbersome “promise” modifiers when they are clear from context. The class
BQLOGTIME is the class of languages decidable by quantum computers that have random access to an
N -bit input, and use only O(log N) steps.

Definition 1.3 (BQLOGTIME). A language L is in BQLOGTIME if it can be decided by a LOGTIME-
uniform family of circuits {Cn}, where each Cn is a quantum circuit on n qubits. On an (N = 2n)-bit
input x, circuit Cn applies O(log N) gates, with each gate being either a query gate which applies the map
|i〉|z〉 7→ |i〉|z⊕xi〉, or a standard quantum gate (from a fixed, finite basis). It is equivalent (by polynomially
padding the number of qubits) to allow poly log(N) gates.

Following Aaronson, our goal will be to design, for each input length N , a distribution on N -bit strings
that can be distinguished from the uniform distribution by a BQLOGTIME predicate, but not by an AC0

circuit. As described in Appendix C, such a distribution can be easily converted to a proper oracle O for
which BQPO 6⊂ PHO.

1.2 Techniques

In this section we briefly discuss the techniques we use for each of the main results listed above.

Showing that our NW distribution is ε-almost k-wise independent. We prove that whenever D is an
(`, p) design in a universe of size t, the random variable (Ut, NW MAJORITY

D (Ut)) is O(pk2/
√

`)-almost k-
wise independent, for k < o(`1/4p−1/2). The relevant definition of almost-k-wise independence (which we

3

inherit from [Aar10a]) appears in Definition 2.1. Recall that this property of our distribution is the technical
basis of the SZK and BPPpath results, as well as the connections to the depth-2 GLN conjecture.

This statement amounts to the assertion that after conditioning on the value of up to k − 1 coordinates,
the bias (away from 1/2) of any specified k-th coordinate is at most O(pk/

√
`). This is an easy calculation

when the conditioned coordinates all lie among the first t coordinates (since the k-th coordinate is either
completely independent, if it lies among the first t coordinates, or else it is MAJORITY applied to a subset of
` of the first t coordinates, of which up to k − 1 may be fixed). In the actual proof, when some conditioned
coordinates lie outside the first t coordinates (which would otherwise be difficult to analyze), we use the
following simple trick to reduce to the easy case: we replace conditioning on coordinate t + i with condi-
tioning on all of the coordinates in set Si of the (`, p)-design (which determine it). Since at most p of these
can affect the bias of the k-th coordinate, we are back in the easy case with up to p(k− 1) bits fixed instead
of (k − 1).

Showing that our conjecture is sufficient to resolve the BQP vs. PH question. In order to show that
our conjecture is sufficient to imply an oracle relative to which BQP is not in the PH, we need to discuss the
quantum part of the argument. Conjecture 1 implies that the NW generator with certain parameters fools
AC0, which is one part of the overall argument. The other part is to exhibit a BQLOGTIME algorithm
that “breaks” this instantiation of the NW generator. Generalizing [Aar10a], our quantum algorithm2 will
receive a random string x ∈ {+1,−1}t (which should be thought of as the input to the NW generator) as
the first half of its input, and as the second half of its input, either

1. a second random string in {+1,−1}t, or

2. a string containing the signs of a unitary U (with entries in {0, 1,−1}) applied to x.

The algorithm distinguishes the two cases (roughly) by querying x into the phases, applying U , multiplying
the second string into the phases, and measuring in the Hadamard basis.

Note that in case (2), each coordinate of the second string is the sign of a +1/ − 1 weighted sum of
certain coordinates of x; i.e., it computes MAJORITY (with a fixed pattern of inputs negated) on this subset
of the coordinate of x. Thus, if we can construct a unitary U whose row-supports form an (`, p) design D in
a universe of size t, then case (2) will be the distribution (Ut, NW MAJORITY

D (Ut)), and case (1) will be the
uniform distribution. The parameters of this instantiation of the NW generator will be such that Conjecture
1 implies that it fools AC0. Our task becomes to construct such a unitary U .

Note that it is not possible to simply take an existing (`, p) design (random, or other explicit constructions
that appear in the literature [NW94, HR03]) and attach +/− signs to the elements of the sets so as to make
their characteristic vectors pairwise orthogonal, which is what is needed for them to come from the rows of
a unitary U . On the other hand we have a different setting of the parameters in mind than usual: we want p
to be unusually small (a constant), but the number of sets in the design is also unusually small (only poly(`)
instead of exp(`)). For these parameters we manage to obtain the required (`, p) design using a geometric
construction, in which the sets are the characteristic vectors of pairs of lines in an affine plane. The strong
symmetries in this construction allow us to assign +/− signs to the elements of each set to achieve pairwise
orthogonality of their characteristic vectors. In fact these set systems have only t/2 (rather than t) sets in
them, so the resulting unitaries will have the required properties only among half of their rows, but a small
modification of the distribution given to the quantum algorithm in case (2) above can handle this without
difficulty.

2We ignore normalization factors in this discussion.

4

In Section 4.2 we give a local decomposition (see Section 3.1 for the formal definition) of these unitaries,
which is necessary to have an efficient quantum algorithm. This is the most technically involved part of the
paper. We also describe a modification of our construction that is extremal in the sense that it optimizes
all relevant parameters simultaneously: all rows of the unitary participate, we have p 6 2, and t 6 `2.
This is not required for our results, but it is aesthetically pleasing. We have been unable to find a local
decomposition that would enable us to actually use this construction as the basis of an efficient quantum
algorithm, and we leave finding such a decomposition as an intriguing open problem.

2 NW distributions are ε-almost k-wise independent

Aaronson [Aar10a] used the following definition of ε-almost k-wise independence in order to formulate his
“Generalized Linial-Nisan” (GLN) conjecture.

Definition 2.1. A random variable D distributed on {0, 1}r is ε-almost k-wise independent if for every k
distinct indices i1, i2, . . . , ik ∈ [r], and every α1, α2, . . . , αk ∈ {0, 1} we have:

1− ε 6 Pr[Di1 = α1 ∧Di2 = α2 ∧ · · · ∧Dik = αk]
2−k

6 1 + ε.

The following is the GLN conjecture, which is now known to be false for depth 3 and higher [Aar10b],
but remains open for depth 2:

Conjecture 2 ([Aar10a]). Let D be any random variable distributed on {0, 1}r that is 1/rΩ(1)-almost rΩ(1)-
wise independent3. Then for every constant-depth circuit C of size at most m = 2ro(1)

,

|Pr[C(D) = 1]− Pr[C(Ur) = 1]| 6 o(1).

We now show that certain instantiations of the NW generator, including the ones in our Conjecture 1,
are ε-almost k-wise independent, with parameters such that the GLN conjecture implies ours.

Theorem 2.2. Let D = {S1, S2, . . . , Sm} be an (`, p) design in a universe of size t. Then for every
k < o(`1/4p−1/2), the jointly distributed random variable

(C, D) = (Ut, NW MAJORITY
D (Ut))

is O(pk2/
√

`)-almost k-wise independent.

Proof. Fix k1 distinct indices i1, i2, . . . , ik1 ∈ [t] and k2 distinct indices j1, j2, . . . , jk2 ∈ [m] with k1+k2 6
k, and fix α1, α2, . . . , αk1 , β1, β2, . . . , βk2 ∈ {0, 1}.

We compute the probability

ρ = Pr[Ci1 = α1 ∧ Ci2 = α2 ∧ · · · ∧ Cik1
= αk1 ∧Dj1 = β1 ∧Dj2 = β2 ∧ · · · ∧Djk2

= βk2],

3One might expect to see k = poly log(r) independence rather than k = rΩ(1), in analogy with the Linial-Nisan conjecture.
Aaronson uses the stronger parameter setting (making the GLN conjecture easier) because it is sufficient for his construction; it is
for ours too.

5

which we write as

ρ =

(
k1∏

w=1

Pr[Ciw = αw|Ci1 = α1 ∧ C2 = α2 ∧ · · · ∧ Ciw−1 = αiw−1]

)

×
(

k2∏

w=1

Pr[Djw = βj |Ci1 = α1 ∧ C2 = α2 ∧ · · · ∧ Cik1
= αik1

∧Dj1 = βj1 ∧Dj2 = βj2 ∧ · · · ∧Djw−1 = βw−1]
)
.

Clearly the first k1 terms of the product are exactly 1/2, since C is uniform on t-bit strings. Now, consider the
w-th factor, denoted ρw, in the second part of the product. The key maneuver is to replace the conditioning
on Djv (for v < w) with conditioning on Ds for s ∈ Sw ∩ Sv. This is permissible because Djv can affect
Djw only through the common elements of their associated sets Sv and Sw. Note that because |Sw∩Sv| 6 p,
the total number of coordinates that are being conditioned upon is 6 pk.

Recall that |Sw| = `, and that the bit Dw is the majority (with certain inputs negated) of the specified `
coordinates of C. Without conditioning, we could compute Pr[Dw = 1] by

1
2`
·

∑̀

r=d`/2e

(
`

r

)
.

We want to compute instead ρw, which is the same probability conditioned on up to pk of the coordinates
of C. The maximum value of ρw is thus

ρw 6 1
2`
·

∑̀

r=d`/2e−pk

(
`

r

)
.

A simple calculation using Stirling’s Approximation shows that
(
`
r

)
6 O(2`√

`
) for all r, so we obtain the

upper bound of

ρw 6 1
2

+ O(pk/
√

`).

A symmetric argument shows that

ρw > 1
2
−O(pk/

√
`).

Thus we conclude (using that k < o(
√

`/(pk))):

ρ 6
(
1/2 + O(pk/

√
`)

)k
6

[
(1/2)

(
1 + O(pk/

√
`)

)]k
6 2−k

(
1 + O(pk2/

√
`)

)
,

and
ρ >

(
1/2−O(pk/

√
`)

)k
>

[
(1/2)

(
1−O(pk/

√
`)

)]k
> 2−k

(
1−O(pk2/

√
`)

)
,

as required.

3 A general framework

In this section we describe how to turn any efficiently quantumly computable unitary into a distribution that
can be distinguished from uniform by a BQLOGTIME machine. Our framework generalizes the setup in
[Aar10a]. The “quantum part” of the paper is almost entirely contained within this section, so we review
some relevant preliminaries below before describing the main result.

6

3.1 Quantum preliminaries

A unitary matrix is a square matrix U with complex entries such that UU∗ = I , where U∗ is the conjugate
transpose. Equivalently, its rows (and columns) form an orthonormal basis. We name the standard basis
vectors of the N = 2n-dimensional vectorspace underlying an n-qubit system by |v〉 for v ∈ {0, 1}n. A
local unitary is a unitary that operates only on b = O(1) qubits; i.e. after a suitable renaming of the standard
basis by reordering qubits, it is the matrix U ⊗ I2n−b , where U is a 2b × 2b unitary U . A local unitary can
be applied in a single step of a quantum computer. A local decomposition of a unitary is a factorization into
local unitaries. We say an N × N unitary is efficiently quantumly computable if this factorization has at
most poly(n) factors.

A quantum circuit applies a sequence of local unitaries (“gates”) where each gate is drawn from a fixed,
finite set of gates. There are universal finite gate sets for which any efficiently quantumly computable unitary
can be realized (up to exponentially small error) by a poly(n)-size quantum circuit [KSV02].

In this paper, the only manner in which our BQLOGTIME algorithm will access the input string x is
the following operation, which “multiplies x into the phases”. There are three steps: (1) query with the
query register clean, which applies the map |i〉|0〉 7→ |i〉|0⊕ xi〉 (note each xi is in {0, 1}); (2) apply to the
last qubit the map |0〉 7→ −|0〉, |1〉 7→ |1〉; (3) query again to uncompute the last qubit. When we speak of
“multiplying x into the phase” it will be linguistically convenient to speak about x as a vector with entries
from {+1,−1}, even though one can see from this procedure that the actual input is a 0/1 vector.

The following lemma will be useful repeatedly. It states (essentially) that a block diagonal matrix, all
of whose blocks are efficiently quantumly computable, is itself efficiently quantumly computable. This is
trivial when all of the blocks are identical, but not entirely obvious in general. The proof is in Appendix A

Lemma 3.1. Fix N = 2n and M = 2m. Let U be an N × N block diagonal matrix composed of the
blocks U1, U2, . . . , UM , where each Ui is a N/M ×N/M matrix that has a poly(n)-size quantum circuit,
a description of which is generated by a uniform poly(n) time procedure, given input i. Then given three
registers of m qubits, n − m qubits, and poly(n) qubits, respectively, with the third register initialized to
|000 · · · 0〉, there is a poly(n) size uniform quantum circuit that applies U to the first two registers and
leaves the third unchanged.

3.2 The quantum algorithm

Let A be any N × N matrix with entries4 in {0, 1,−1} and pairwise orthogonal rows, and define S(A, i)
to be the support of the i-th row of matrix A. Define A to be the matrix A with entries in row i scaled by
1/

√
|S(A, i)|, and observe that A is a unitary matrix.

Define the random variable DA,M = (x, z) distributed on {+1,−1}2N by picking x ∈ {+1,−1}N

uniformly, and setting the next N bits to be z ∈ {+1,−1}N defined by zi = sgn((Ax)i) = sgn((Ax)i) for
i 6 M and zi independently and uniformly random in {+1,−1} for i > M .

It will be convenient to think of M = N initially; we analyze the general case because we will eventually
need to handle M = N/2. Below, we use U2N to denote the random variable uniformly distributed on
{+1,−1}2N .

Theorem 3.2. Let N = 2n for an integer n > 0, and let M = Ω(N). For every matrix A ∈ {0, 1,−1}N×N

with pairwise orthogonal rows, there is a BQLOGTIME algorithm QA that distinguishes DA,M from U2N ;

4We could extend this framework to matrices with general entries, but we choose to present this restriction since it is all we
need.

7

i.e., there is some constant ε > 0 for which:

|Pr[QA(DA,M) = 1]− Pr[QA(U2N) = 1]| > ε.

The algorithm is uniform if A comes from a uniform family of matrices.

Proof. The input to the algorithm is a pair of strings x, z ∈ {+1,−1}N .
The algorithm performs the following steps:

1. Enter a uniform superposition 1√
N

∑
i∈{0,1}n |i〉 and multiply x into the phase to obtain 1√

N

∑
i∈{0,1}n xi|i〉.

2. Apply A to obtain 1√
N

∑
i∈{0,1}n(Ax)i|i〉.

3. Multiply z into the phase to obtain 1√
N

∑
i∈{0,1}n zi(Ax)i|i〉.

4. Define vector w by wi = 1√
N

zi(Ax)i. Apply the N×N Hadamard5 H to obtain
∑

i∈{0,1}n(Hw)i|i〉,
and measure in the computational basis. Accept iff the outcome is 0n.

We first argue that the acceptance probability is small in case (x, z) is distributed as U2N . This follows
from a symmetry argument: for fixed x, and w as defined in Step 4 above, the vector Hw above has every
entry identically distributed, because z is independently chosen uniformly from {−1, +1}N and every row
of H is a vector in {−1,+1}N . In particular this implies that the random variable (Hw)2i is identically
distributed for all i. Together with the fact that

∑
i(Hw)2i = 1, we conclude that E[(Hw)2i] = 1/N . Then

by Markov, with probability at least 1 − 1/
√

N we accept with probability at most
√

N/N , for an overall
acceptance probability of at most 2/

√
N .

Next, we argue that the acceptance probability is large in case (x, z) is distributed as DA,M . Here we
observe that for i 6 M , wi = 1√

N
|(Ax)i| and hence E[wi] = 1√

N ·|S(A,i)|Ω(
√
|S(A, i)|) = Ω(1/

√
N)

(since before scaling, wi is just the distance from the origin of a random walk on the line, with |S(A, i)|
steps). For i > M , we simply have E[wi] = 0. Then E[

∑
i wi] = M · Ω(1/

√
N) = Ω(

√
N), so

E[(Hw)0n] = Ω(1). Since the random variable (Hw)0n is always bounded above by 1, we can apply
Markov to its negation to conclude that with constant probability, it is at least a constant ε (and in such cases
the acceptance probability is at least ε2). Overall, the acceptance probability is Ω(1).

The BQLOGTIME algorithm for what Aaronson calls FOURIER CHECKING in [Aar10a] is recovered
from the above framework by taking A to be a DFT matrix (and M = N).

4 Unitary matrices with large, nearly-disjoint row supports

In this section we construct unitary matrices A with the additional property that all or “almost all” of the row
supports S(A, i) are large and have bounded intersections. We also show that these unitaries are efficiently
quantumly computable. This is the final part of our main result: the distribution DA,M (it will turn out that
M will be half the underlying dimension) is distinguishable from uniform by a BQLOGTIME algorithm by
Theorem 3.2, and at the same time DA,M can be seen as an NW distribution that by Conjecture 1 fools AC0

(see Section 5 for the precise statement).

5This is the matrix H whose rows and columns are indexed by {0, 1}n, with entry (i, j) equal to −1〈i,j〉/
√

N .

8

4.1 The paired-lines construction

We describe a collection of q2/2 pairwise-orthogonal rows, each of which is a vector in {0, +1,−1}q2
. We

identify q2 with the affine plane Fq ×Fq, where q = 2n for an integer n > 0. Let B1, B2 be an equipartition
of Fq, and let φ : B1 → B2 be an arbitrary bijection. Our vectors are indexed by a pair (a, b) ∈ Fq × B1,
and their coordinates are naturally identified with Fq × Fq:

va,b[x, y] =
{ −1 y = ax + b

+1 y = ax + φ(b)
(1)

Notice that v(a, b) is −1 on exactly the points of Fq × Fq corresponding to the line with slope a and y-
intercept b, and +1 on exactly the points of Fq × Fq corresponding to the line with slope a and y-intercept
φ(b). So each v(a, b) is supported on exactly a pair of parallel lines. Orthogonality will follow from the
fact that every two non-parallel line-pairs intersect in exactly one point, as argued in the proof of the next
lemma.

Lemma 4.1. The vectors defined in Eq. (1) are pairwise orthogonal, and their supports form a (2q, 4)
design.

Proof. Consider (a, b) 6= (a′, b′). If a = a′ then the supports of v(a, b) and v(a, b′) are disjoint. Otherwise
a 6= a′ and there are exactly four intersection points (obtained by solving linear equations over Fq):

• (x = (b′ − b)/(a − a′), y = ax + b) = (x = (b′ − b)/(a − a′), y = a′x + b′), which contributes
(−1) · (−1) = 1 to the inner product, and

• (x = (b′ − φ(b))/(a − a′), y = ax + φ(b)) = (x = (b′ − φ(b))/(a − a′), y = a′x + b′), which
contributes (+1) · (−1) = −1 to the inner product, and

• (x = (φ(b′) − b)/(a − a′), y = ax + b) = (x = (φ(b′) − b)/(a − a′), y = a′x + φ(b′)), which
contributes (−1) · (+1) = −1 to the inner product, and

• (x = (φ(b′) − φ(b))/(a − a′), y = ax + φ(b)) = (x = (φ(b′) − φ(b))/(a − a′), y = a′x + φ(b′)),
which contributes (+1) · (+1) = 1 to the inner product.

The sum of the contributions to the inner product from these four points is zero. The computation of the
support size is straightforward.

In Appendix B, we give another construction (which is not needed for our main result) in which the
number of vectors is exactly equal to the dimension of the underlying space (giving rise to a unitary in
which “all rows participate” instead of only half of the rows).

4.2 A local decomposition

We new describe an q2×q2 unitary matrix that is efficiently quantumly computable and has the (normalized)
vectors v(a, b) from Eq. (1) as q2/2 of its q2 rows. We recall that q = 2n for an integer n > 0.

Proposition 4.2. The following q × q unitary matrices are efficiently quantumly computable:

• The DFT matrix F with respect to the additive group of Fq.

• The inverse DFT matrix F−1 with respect to the additive group of Fq.

9

• The q × q unitary matrix B with 1√
2
(Iq/2| − Iq/2) as its first q/2 rows, 1√

4
(Iq/4| − Iq/4|Iq/4| − Iq/4)

as its next q/4 rows, 1√
8
(Iq/8| − Iq/8|Iq/8| − Iq/8|Iq/8| − Iq/8|Iq/8| − Iq/8) as its next q/8 rows, etc...

and whose last row is 1√
N

(1, 1, 1, . . . , 1).

Proof. The first two matrices are well-known to be efficiently quantumly computable. For the last one we
make use of the Hadamard matrix

H =
1√
2

(
1 −1
1 1

)
.

Let Bi be the q × q identity matrix with its lower right 2i × 2i submatrix replaced by the matrix H ⊗
I2i−1 . Each Bi is efficiently quantumly computable by Lemma 3.1. It is then easy to verify that B =
B1B2B3 · · ·Bn.

Lemma 4.3. Let α be a generator of the multiplicative group of Fq. For c ∈ Fq, let Dc denote the q × q
diagonal matrix

1√
q
· diag

(√
q, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . . , (−1)Tr (αq−1·c)

)
,

and let D′
c denote the q × q diagonal matrix

1√
q
· diag

(
0, (−1)Tr (α1·c), (−1)Tr (α2·c), (−1)Tr (α3·c), . . . , (−1)Tr (αq−1·c)

)
.

Then the q2 × q2 matrix D whose (i, j) block (with i, j ∈ Fq) equals Dij if i = j and D′
ij otherwise, is

efficiently quantumly computable.

Proof. Consider the q2 × q2 block-diagonal matrix that has as its (k, k) block the matrix whose (i, j) entry
is (−1)Tr (ijαk) for k ∈ {1, 2, . . . , q − 1} and whose (0, 0) block is Iq. Each such block except the (0, 0)
block is the DFT matrix F with its rows (or equivalently, columns) renamed according to the map j 7→ jαk.
The F matrix is efficiently quantumly computable and the map j 7→ jαk is classically and reversibly (and
thus quantumly) efficiently computable. Thus each q × q block on the diagonal is efficiently quantumly
computable. By Lemma 3.1 the entire matrix is efficiently quantumly computable.

If we index columns by (i, i′) ∈ (Fq)2 and rows by (j, j′) ∈ (Fq)2, then the desired matrix D is the
above block-diagonal matrix with the order of the two indexing coordinates for the rows transposed, and the
order of the two indexing coordinates for the columns transposed.

Theorem 4.4. The q2 × q2 matrix (Iq ⊗ B) · (Iq ⊗ F) · D · (Iq ⊗ F−1), which is efficiently quantumly
computable, has the vectors v(a, b) from Eq. (1) as q2/2 of its rows6.

Proof. Let Sc be the q×q permutation matrix Sc that (when multiplied on the right) shifts columns, identified
with Fq, by the map x 7→ x + c. Let J be the all-ones matrix. The main observation is that

FDcF
−1 =

1√
q
Sc −

√
q − 1
q

J,

and that
FD′

cF
−1 =

1√
q
Sc − 1√

q
J.

6To be precise, these are the v(a, b) with respect to some equipartition B1, B2 and some bijection φ.

10

Thus the final matrix has in its (i, j) block (with i, j ∈ Fq) the matrix

B ·
(

1√
q
Sij −

√
q − 1
q

J

)

if i = j, and

B ·
(

1√
q
Sij − 1√

q
J

)

otherwise. Observe that BJ has all zero entries except for the last row, so in particular, the first q/2 rows
of the (i, j) block are (1/

√
2q)(Iq/2| − Iq/2)Sij . Therefore the q/2 rows of the entire q2 × q2 matrix

corresponding to the top halves of blocks (i, j) as j varies, give the vectors v(i, b) for b ∈ B1, if we identify
columns with Fq×Fq as follows: columns of the j-th block are identified with {j}×Fq, and within the j-th
block, B1 is the first q/2 columns and B2 is the next q/2 columns (and the bijection φ maps the element
associated with the b-th column to the element associated with the (b + q/2)-th column).

Then, as i varies over Fq, we find all of the vectors from Eq. (1) as the “top-halves” of each successive
set of q rows of the large matrix.

5 Putting it all together

Let A be the matrix of Theorem 4.4, and set N = q2 and M = N/2. By Theorem 3.2, there is a BQLOG-
TIME algorithm that distinguishes DA,M from the the uniform distribution U2N .

By Lemma 4.1, the first M rows of A have supports forming a (2
√

N, 4)-design D. It is also clear that
for i 6 M , the (N +i)-th bit of DA,M computes MAJORITY (with a fixed pattern of inputs negated) on those
among the first N bits that lie in S(A, i). Thus DA,M is exactly the distribution (UN , NW MAJORITY

D (UN))
followed by N/2 additional independent random bits (which can have no impact on the distinguishability
of the distribution from uniform). Thus by Conjecture 1, no constant-depth, polynomial-size circuit can
distinguish DA,M from U2N , which completes the argument.

We briefly describe why the standard NW argument fails (and why we must rely on Conjecture 1). The
standard argument proceeds as follows: define 2N + 1 hybrid distributions DA,M = H0, H1, . . . , H2N =
U2N , that interpolate between DA,M and U2N . Given a distinguishing circuit C : {0, 1}2N → {0, 1} for
which

|Pr[C(DA,M) = 1]− Pr[C(U2N) = 1]| > ε,

we argue that for some i
|Pr[C(Hi) = 1]− Pr[C(Hi+1) = 1]| > ε/M

by the triangle inequality (and here we are making the additional observation that H0 = H1 = · · · = HN

and HN+M+1 = HN+M+2 = · · · = H2N so the gap of ε must be spread over only M differences).
From here, we obtain a next-bit-predictor with advantage ε/M and hardwire at most M lookup tables of
size 2p, to obtain a circuit of size |C| + O(2N) + O(2pM) that computes MAJORITY (on 2

√
N bits) with

success probability 1/2+ε/M . The problem is that this advantage over random guessing is not sufficient to
obtain a contradiction for the function MAJORITY, which can be computed easily with success probability
1/2 + Ω(N1/4), for the parameters coming from the unitary A from Theorem 4.4.

Even if we had a unitary whose rows formed an (`, p)-design with better parameters, the standard argu-
ment fails. This is because it must be that ` 6 N , and yet we must also have M À √

N for DA,M to be
even statistically noticably different from uniform. But the trivial circuit that outputs an arbitrary bit of the
input succeeds with probability 1/2 + Ω(1/

√
`) which is larger than the 1/2 + ε/M that comes out of the

standard NW argument above.

11

6 Our conjecture: discussion

We believe that Conjecture 1 is quite approachable, given the large literature and variety of proof techniques
concerning pseudorandom generators and related objects. As examples, we mention two ideas from the
literature that seem relevant (although obviously they haven’t yet led to a solution).

The first is the analysis by Sudan, Trevisan, and Vadhan [STV01] of the NW PRG when applied to a
“mildly hard” predicate (i.e., one for which small circuits fail on only a δ fraction of the inputs). They prove
that the output distribution is computationally indistinguishable from a distribution having high entropy by
invoking Impagliazzo’s hard-core lemma [Imp95], and arguing that output bits of the NW PRG “often” fall
in a hard core that is considerably harder on average than the original mildly hard predicate.

We also have a hard predicate whose average-case hardness falls short of what we would need for
Conjecture 1 to be true via the standard argument; i.e., if MAJORITY on ` bits were 1/2+1/poly(`) hard, we
would be done. The high-level message of Sudan, Trevisan and Vadhan is that this hardness can be achieved
(essentially) at the price of comparing to a high-entropy distribution rather than the uniform distribution.
Our BQP algorithm is fairly robust and would likely still work on a sufficiently high entropy distribution
(it is only necessary to “kill” correlations with a particular element of the Hadamard basis). However, the
central technical component of the proof in [STV01] is the Impagliazzo hard-core lemma [Imp95], and a
sufficiently strong hardcore lemma is not known for AC0. In fact, the function MAJORITY has no hard core:

Proposition 6.1. No subset of MAJORITY is ε-hardcore for AC0, for any ε < 1/n.

Proof. Given a x ∈ {0, 1}n, the randomized procedure that picks a random one of the n input bits and
outputs it succeeds in computing MAJORITY(x) with probability at least 1/2 + 1/n. This procedure has the
same success probability over any subset S ⊆ {0, 1}n. For any fixed S, there is a fixing of the random bits
that preserves this success probability, and which results in a circuit of size 1 (it just outputs xi for some
fixed i).

Nevertheless, it may be that replacing the uniform distribution with a high minentropy one can be useful in
circumventing the loss from the hybrid argument.

The second approach is to directly circumvent the loss due to the hybrid argument. This is explicitly
addressed in [BSW03], where they show that the loss can indeed be avoided in certain computational models.
One of these models is “PH circuits,” which sounds superficially like it might be relevant to our setting. What
is actually needed to use their ideas is the ability to approximately count an efficiently recognizable set, in
the same class that recognizes the set. Such a statement is not known (or expected) for AC0, but it is still
possible that other ideas could circumvent the hybrid argument for AC0.

However, any route to proving Conjecture 1 faces the same challenge discussed in [Aar10a]: the proof
must be “non-black-box” in the sense that it can’t apply to arbitrary low-degree polynomial functions in
addition to its native Boolean setting. This is because the quantum algorithm of Theorem 3.2 implies (via
[BHC+01]) the existence of a constant-degree, multivariate real polynomial computing the acceptance prob-
ability (and hence distinguishing the NW distribution from uniform). A black-box reduction would trans-
form a distinguisher of this form to a similarly low-degree polynomial approximating MAJORITY, but we
know that no such polynomial for approximating MAJORITY can exist [Smo93]. So any proof of Conjecture
1 must prove that the distribution in question fools AC0 in some way that does not replace AC0 circuits by
low degree approximating polynomials and then argue about those.

Here are some ideas that could plausibly form the basis of a proof of Conjecture 1. We consider the
simpler situation in which the distributions being compared are N2 independent copies of the random vari-
able D – where D = (UN , MAJORITY(UN)) – and N2 independent copies of the random variable UN+1

12

distributed uniformly on N + 1 bits. This corresponds to the NW construction we have been working with,
if the underlying nearly-disjoint sets are taken to be completely disjoint. AC0 should be incapable of dis-
tinguishing these distributions; here is the intuition. First, observe that there are no correlations between
blocks, so the hypothetical distinguisher must examine each block separately. Since AC0 cannot approxi-
mate majority well, we know that the only “accessible” information about each block is a “noisy bit” saying
whether it is distributed according to D or UN+1 – in the case of uniform, this bit is 1 with probability 1/2,
and in the case of distribution D, this bit is 1 with probability 1/2 + Θ(1/

√
N). How can a hypothetical

distinguisher aggregate these noisy bits across the N2 independent copies? In one case, the expected sum of
these noisy bits (1/2)N2 and in the other case it is (1/2+Θ(1/

√
N))N2, and by concentration of measure,

the sum is highly likely to be close to these expectations. So the hypothetical distinguisher only needs to tell
the difference between N2 fair coin flips versus N2 slightly biased coin flips. But exactly this task is hard
for AC0 (which can be seen by reduction from MAJORITY, as written down in Corollary 12 of [Aar10a]).
So, it seems that either the distinguisher must approximate MAJORITY better than allowed (to get less noisy
bits), or it must be detecting very small bias in a sequence of coin flips. In upcoming work, we are able
to show that indeed AC0 cannot distinguish these two distributions. This is encouraging because it shows
that the aforementioned “non-black-box” requirement is not insurmountable. Extending this result to the
not-completely-disjoint case still seems challenging, however.

Acknowledgements. We thank Scott Aaronson and Yi-Kai Liu for helpful discussions.

References

[Aar10a] S. Aaronson. BQP and the polynomial hierarchy. In Leonard J. Schulman, editor, STOC, pages
141–150. ACM, 2010.

[Aar10b] S. Aaronson. A counterexample to the Generalized Linial-Nisan Conjecture. In ECCCTR:
Electronic Colloquium on Computational Complexity, technical reports, number 109, 2010.

[BHC+01] R. Beals, H.Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polyno-
mials. J. ACM, 48(4):778–797, 2001.

[BSW03] B. Barak, R. Shaltiel, and A. Wigderson. Computational analogues of entropy. In Sanjeev
Arora, Klaus Jansen, José D. P. Rolim, and Amit Sahai, editors, RANDOM-APPROX, volume
2764 of Lecture Notes in Computer Science, pages 200–215. Springer, 2003.

[BV93] E. Bernstein and U. V. Vazirani. Quantum complexity theory. In STOC, pages 11–20, 1993.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984.

[HR03] T. Hartman and R. Raz. On the distribution of the number of roots of polynomials and explicit
weak designs. Random Struct. Algorithms, 23(3):235–263, 2003.

[Imp95] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In FOCS, pages 538–545,
1995.

[KSV02] A.Y Kitaev, A.H Shen, and M.N Vyalyi. Classical and Quantum Computation. AMS, 2002.

13

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[NW94] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994.

[Smo93] R. Smolensky. On representations by low-degree polynomials. In FOCS, pages 130–138. IEEE,
1993.

[STV01] M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the XOR lemma.
J. Comput. Syst. Sci., 62(2):236–266, 2001.

[Wat00] J. Watrous. Succinct quantum proofs for properties of finite groups. In FOCS, pages 537–546,
2000.

[Yao82] A. Yao. Theory and applications of trapdoor functions (extended abstract). In FOCS, pages
80–91. IEEE, 1982.

A Omitted proofs

Proof. (Of Lemma 3.1) Fix a finite universal set of quantum gates, of cardinality d, each of which operates
on at most b qubits. A convenient notion will be that of an oblivious circuit, in which we fix an ordering (say,
lexicographic) on [n]b, and the steps of the circuit are identified with poly(n) cycles through this list: when
we are on step (a1, a2, . . . , ab) ∈ [n]b in one of these cycles, we operate on qubits a1, a2, . . . , ab. Clearly,
any (uniform) quantum circuit can be converted to a (uniform) “oblivious” circuit with at most an nb blowup
by inserting dummy identity gates.

Let nk be an upper bound on the size of the oblivious circuits obtained in this way for the various Ui.
The circuit for each Ui is now a sequence

j(i) =
(
j
(i)
1 , j

(i)
2 , j

(i)
3 , . . . , j

(i)

nk

)
,

with each j
(i)
` ∈ [d] specifying which gate to apply at step ` in the oblivious circuit for Ui (and because

the circuit is oblivious, the qubits to which this gate should be applied are easily determined from `). Let
f : [M] → [d]n

k
be the function that maps i to the vector j(i).

Now we describe the promised efficient quantum procedure:

1. Apply the map derived from f that takes |i〉|z〉 to |i〉|z⊕ f(i)〉, to the first and third register. We view
the contents of the third register as a vector in [d]n

k
.

2. Repeat for ` = 1, 2, 3, . . . , nk: apply the “controlled unitary” that consults the `-th component of the
third register, and applies the specified gate to qubits (a1, a2, . . . , ab) of the second register (again,
(a1, a2, . . . , ab) are easily determined from ` because the circuit is oblivious). The important obser-
vation is that this “controlled unitary” operates on only constantly many qubits.

3. Repeat step 1 to uncompute the auxiliary information in the third register.

14

B A unitary in which all rows participate

There is a tension between the triple goals of (1) having many pairwise orthogonal vectors, (2) maintaining
bounded pairwise intersections of the supports, and (3) having the supports large. It is natural to wonder
whether the above construction (in which we found a number of vectors equal to 1/2 the dimension of the
underlying space) is in some sense optimal. For example, is there some barrier to simultaneously optimizing
all three goals?

Here we show that one can indeed optimize all three goals at the same time, by specifying a construction
that builds on the “paired-lines” construction. Our construction will have as many pairwise orthogonal
vectors as the dimension of the underlying space (which is obviously as many as is possible); it will have
intersections sizes bounded above by 2 (the upper bound cannot be 0 without constraining the product of the
number of rows and the support sizes to be at most the dimension of the underlying space, and no pairwise
intersections can have cardinality one without violating orthogonality); the support sizes will be at least
the square root of the dimension of the underlying space (and one can’t exceed that without having larger
intersection sizes).

This construction is not needed for our main results, but we find it aesthetically pleasing that one can
optimize all three parameters in this way. We don’t know of a local decomposition for this matrix, and we
leave finding one as an intriguing open problem.

While the construction of Section 4.1 needed characteristic two, the present construction needs odd
characteristic. We fix Fq with q an odd prime power, and we choose a subset Q ⊆ F∗q of size (q − 1)/2 for
which Q∩−Q = ∅, where −Q = {−x : x ∈ Q}. Our vectors will have q2 − 1 coordinates, identified with
the punctured plane P = Fq × Fq \ {(0, 0)}.

We have three types of vectors in {0,−1,+1}P : first, for all a ∈ Fq and b ∈ Q

va,b[x, y] =

+1 x = 0, y = b
+1 x ∈ Q, y = ax + b
−1 x ∈ Q, y = ax− b
0 otherwise

, (2)

second, for all a ∈ Fq and b ∈ −Q

va,b[x, y] =

+1 x = 0, y = b
+1 x ∈ −Q, y = ax + b
−1 x ∈ −Q, y = ax− b
0 otherwise

, (3)

and finally, for each c ∈ F∗q
uc[x, y] =

{
+1 x = c, y ∈ Fq

0 otherwise
. (4)

Lemma B.1. The vectors defined in Eqs. (2), (3) and (4) are pairwise orthogonal and their supports form a
(q, 2)-design.

Proof. It is an easy computation to see that the support of each of the vectors has cardinality q. We now argue
that they are pairwise orthogonal. There are several cases depending on the two rows under consideration:

1. va,b and va′,b′ : if one comes from Eq. (2) and the other from Eq. (3) then the supports are disjoint. So
we assume both come from Eq. (2) or both come from Eq. (3).

15

(a) Both come from Eq. (2) and b = b′: we have one intersection (0, b) (which contributes +1 to
the inner product) and exactly one of the following two intersection points: (x = −2b/(a −
a′), ax + b = a′x − b) or (x = 2b/(a − a′), ax − b = a′x + b), which contributes −1 to the
inner product. We have exactly one because the two x-values are negations of each other, and
non-zero, so exactly one is in Q.

(b) Both come from Eq. (2) and b 6= b′: we have exactly one of the following two intersection points:
(x = (b′−b)/(a−a′), ax+b = a′x+b′) or (x = (−b′+b)/(a−a′), ax−b = a′x−b′), which
contributes +1 to the inner product, and exactly one of the following two intersection points:
(x = (b′ + b)/(a − a′), ax − b = a′x + b′) or (x = (−b′ − b)/(a − a′), ax + b = a′x − b′),
which contributes −1 to the inner product. For each pair, there is exactly one of the pair of
possible intersection points because the two x-values are negations of each other, and non-zero,
so exactly one is in Q.

(c) Both come from Eq. (3) and b = b′: identical to case (1a) above, with −Q in place of Q.

(d) Both come from Eq. (3) and b 6= b′: identical to case (1b) above, with −Q in place of Q.

2. uc and u′c: these have disjoint supports for c 6= c′.

3. va,b and uc: if c ∈ Q, then the support of uc intersects the support of va,b only if va,b comes from
Eq. (2), and then we get one intersection at point (x = c, ax + b) which contributes a +1 to the inner
product, and one intersection at point (x = c, ax− b) which contributes a −1 to the inner product. If
c ∈ Q, then the support of uc intersects the support of va,b only if va,b comes from Eq. (3), and we
have an identical argument, with −Q in place of Q.

This is a complete enumeration of cases, and in no case did we have more than 2 intersection points.

We conclude this section with a question: are these matrices related in some way to the DFT matrix over
some family of non-abelian groups (e.g. the affine group F∗q n Fq), or are they indeed completely different
from the unitaries seen before in quantum algorithms?

C Converting a distributional oracle problem into a standard oracle

For completeness we include this argument; a similar proof7 appears in [Aar10a].
Let D1 = {D1,n}, D2 = {D2,n} be ensembles of random variables over 2g(n)-bit strings (and assume

g(n) 6 poly(n) is injective and easily computable) for which BQLOGTIME can distinguish the two distri-
butions but AC0 cannot. Then when D1 and D2 are viewed as distributions on (truth-tables of) oracles, there
is a BQP oracle machine that distinguishes the two distributions, but no PH oracle machine can distinguish
them. Specifically, we have that there exists a BQP oracle machine A for which

Pr[AD1(1n) = 1]− Pr[AD2(1n) = 1] > ε

while for every PH oracle machine M ,

Pr[MD1(1n) = 1]− Pr[MD2(1n) = 1] 6 δ,

and we have ε > δ for sufficiently large n > n0.
7Our proof differs in one respect: the conditioning on T (n), which allows us to handle any pair of ε, δ with some separation.

16

We now convert the distributions on oracles into a single oracle O for which BQPO 6⊂ PHO. Let L
be a uniformly random unary language in {1}∗. For each n, if 1n ∈ L, sample a 2g(n)-bit string x from D1

and define oracle O restricted to length g(n) so that x is its truth table; otherwise sample a 2g(n)-bit string x
from D2 and define oracle O restricted to length g(n) so that x is its truth table.

We will show that conditioned on AO(1n) = L(1n) for all n > n0, we still have L /∈ PHO with
probability 1 over the choice of L and O. Let T (n) be the event that AO(1n) = L(1n), and for each
PH machine M and let SM (n) be the event that MO(1n) = L(1n). Note that T (n), SM (n) are each
independent of T (n′), SM (n′) for n′ 6= n. Then we have for n > n0:

Pr[T (n)] = (1/2) · Pr[AD1(1n) = 1] + (1/2) · Pr[AD2(1n) = 0] > 1/2 + ε/2
Pr[SM (n)] = (1/2) · Pr[MD1(1n) = 1] + (1/2) · Pr[MD2(1n) = 0] 6 1/2 + δ/2

and thus

Pr
L,O

[SM (n)|T (n)] =
Pr[SM (n) ∧ T (n)]

Pr[T (n)]
6 Pr[SM (n)]

Pr[T (n)]
6 1 + δ

1 + ε
< 1.

So by independence of different input lengths:

Pr
L,O

[SM (n0) ∧ SM (n0 + 1) ∧ SM (n0 + 2) ∧ · · · |T (n0) ∧ T (n0 + 1) ∧ T (n0 + 2) ∧ · · ·] = 0.

The number of possible PH machines is countably infinite, so by a union bound,

Pr
L,O

[∃M SM (n0) ∧ SM (n0 + 1) ∧ SM (n0 + 2) ∧ · · · |T (n0) ∧ T (n0 + 1) ∧ T (n0 + 2) ∧ · · ·] = 0.

So conditioned on AO(1n) = L(1n) for all n > n0, we have L /∈ PHO with probability 1 over the choice
of L and O. Thus (by hardwiring L(n) for n < n0 in the BQP machine), there exists an oracle O for which
BQPO 6⊂ PHO.

17

