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Abstract

This paper develops general space-efficient methods for error reduction for unitary quantum computation.
Consider a polynomial-time quantum computation with completeness c and soundness s, either with or without
a witness (corresponding to QMA and BQP, respectively). To convert this computation into a new computation
with error at most 2−p, the most space-efficient method known requires extra workspace ofO

(
p log 1

c−s

)
qubits.

This space requirement is too large for scenarios like logarithmic-space quantum computations. This paper
presents error-reduction methods for unitary quantum computations (i.e., computations without intermediate
measurements) that require extra workspace of just O

(
log p

c−s

)
qubits. This in particular gives the first methods

of strong amplification for logarithmic-space unitary quantum computations with two-sided bounded error. This
also leads to a number of consequences in complexity theory, such as the uselessness of quantum witnesses
in bounded-error logarithmic-space unitary quantum computations, the PSPACE upper bound for QMA with
exponentially-small completeness-soundness gap, and strong amplification for matchgate computations.



1 Introduction

1.1 Background

A very basic topic in various models of quantum computation is whether computation error can be efficiently re-
duced within a given model. For polynomial-time bounded error quantum computation, the most standard model of
quantum computation, the computation error can be made exponentially small via a simple repetition followed by
a threshold-value decision. This justifies the choice of 2/3 and 1/3 for the completeness and soundness parameters
in the definition of the corresponding complexity class BQP. This is also the case for quantum Merlin-Arthur
(QMA) proof systems, another central model of quantum computation that models a quantum analogue of NP
(more precisely, MA), and the resulting class QMA may again be defined with completeness and soundness pa-
rameters 2/3 and 1/3.

An undesirable feature of the simple repetition-based error reduction above is that the necessary workspace
enlarges linearly with respect to the number of repetitions. More explicitly, for a given p, the number of repetitions
necessary to achieve an error of 2−p is O

( p
(c−s)2

)
, and thus both the workspace size and the witness size become

O
( p

(c−s)2
)

times larger. This implies that the simple repetition-based method is no longer useful when either the
workspace size or the witness size is required to be logarithmically bounded.

Marriott and Watrous [MW05] developed a more sophisticated method of error reduction for QMA proof
systems that does not increase the witness size at all. For a given p, their method still requires O

( p
(c−s)2

)
calls

of the original computation and its inverse to achieve the computation error 2−p, but the method reuses both the
workspace and the witness every time it calls the original computation and its inverse. Hence, the witness size never
increases in their method. This is a strong property that allows them to show the uselessness of logarithmic-size
quantum witnesses in QMA proof systems (i.e., QMAlog = BQP, where QMAlog is the class of problems having
QMA proof systems with logarithmic-size quantum witnesses). Their method is also more efficient in workspace
size than the simple repetition-based method, but still requires extra workspace of size O

( p
(c−s)2

)
, as it must record

outcomes of all the calls of the original computation and its inverse.
Nagaj, Wocjan, and Zhang [NWZ09] succeeded in reducing to O

( p
c−s
)

the number of calls of the original
computation and its inverse necessary to achieve the computation error 2−p for a given p, while keeping the witness
size unchanged. Their method makes use of the phase-estimation algorithm, an essential component of many
quantum algorithms including the celebrated factoring algorithm. To achieve error 2−p for a given p, their method
must repeat O(p) times the phase-estimation algorithm with precision of at least O

(
log 1

c−s
)

bits and record all
these estimated phases. Hence, this phase-estimation-based method uses extra workspace of size O

(
p log 1

c−s
)
.

As can be seen from above, both of the Marriott-Watrous method and the phase-estimation-based method
are still insufficient for the case where the workspace size must be logarithmically bounded. No efficient error-
reduction method is known that keeps the size of additionally necessary workspace logarithmically bounded. This is
not limited to the case of QMA proof systems, and in fact almost no efficient error-reduction method is known even
in the case of logarithmic-space quantum computations, and in the case of space-bounded quantum computations
in general. The study of general space-bounded quantum computations was initiated by Watrous [Wat99] based
on quantum Turing machines. Several models of space-bounded quantum computations have been proposed and
investigated since then in the literature [Wat01, Wat03, Wat09a, JKMW10, vMW12, TS13], some considering only
logarithmic-space quantum computations and others treating general cases. It is not known whether any of these
models are computationally equivalent. It is also not known whether error reduction is possible for logarithmic-
space quantum computation defined according to any of these models, except the only known affirmative answer
shown by Watrous [Wat01] on computation of one-sided bounded error performed by logarithmic-space quantum
Turing machines. As negative evidence in the case where computational resources are too limited, computation
error cannot be reduced below a certain constant for one-way quantum finite state automata [AF98].

1



1.2 Main Result and Its Consequences

This paper presents a general method of strong and space-efficient error reduction for unitary quantum computa-
tions. In particular, the method is applicable to logarithmic-space unitary quantum computations and logarithmic-
space unitary QMA proof systems. All the results in this paper are model-independent and hold with any model
of space-bounded quantum computations as long as it performs unitary quantum computations. The unitary model
is not the most general in that it does not allow any intermediate measurements (notice that the standard technique
of simulating intermediate measurements by unitary gates requires unallowably many ancilla qubits in the case
of space-bounded computations), but is arguably one of the most reasonable models of space-bounded quantum
computation.

Let N and Z+ denote the sets of positive and nonnegative integers, respectively. Let
QMAUSPACE[lV, lM](c, s) denote the class of problems having QMA proof systems with completeness c
and soundness s, where the verifier performs a unitary quantum computation that has no time bound but is
restricted to use lV(n) private qubits and to receive a quantum witness of lM(n) qubits on every input of length n.
The main result of this paper is the following strong and space-efficient error-reduction for such QMA-type
computations.

Theorem 1. For any functions p, lV, lM : Z+ → N and for any functions c, s : Z+ → [0, 1] satisfying c > s, there
exists a function δ : Z+ → N that is logarithmic with respect to p

c−s such that

QMAUSPACE[lV, lM](c, s) ⊆ QMAUSPACE[lV + δ, lM](1− 2−p, 2−p).

This paper presents three different proofs of this main theorem, all of which are based on reductions that are
in space logarithmic and also in time polynomial with respect to p

c−s . As will be found in Section 5, the theorem
can be proved by remarkably simple arguments. Nevertheless, the theorem is very powerful in that it fruitfully
leads to many consequences that substantially deepen the understanding on the power of QMA proof systems and
quantum computations in general, both in the space-bounded scenario and in the usual polynomial-time scenario.
In what follows, a function f : Z+ → N is polynomially bounded if f is polynomial-time computable and f(n) is
in O(nd) for some constant d > 0, and is logarithmically bounded if f is logarithmic-space computable and f(n)
is in O(log n).

Strong amplification for unitary BQL The first consequence of Theorem 1 is a remarkably strong error-
reducibility in logarithmic-space unitary quantum computations. Let QUL(c, s) denote the class of problems
solvable by logarithmic-space unitary quantum computations with completeness c and soundness s. The follow-
ing amplifiability is immediate from Theorem 1 by taking a function p to be logarithmic-space computable and
polynomially bounded, functions c and s to be logarithmic-space computable and to satisfy c− s ≥ 1/q for some
polynomially bounded function q : Z+ → N, a function lV to be logarithmically bounded, and a function lM = 0.

Corollary 2. For any polynomially bounded function p : Z+ → N that is logarithmic-space computable and for any
logarithmic-space computable functions c, s : Z+ → [0, 1] satisfying c− s ≥ 1/q for some polynomially bounded
function q : Z+ → N,

QUL(c, s) ⊆ QUL(1− 2−p, 2−p).

This in particular justifies defining the bounded-error class BQUL of logarithmic-space unitary quantum com-
putations by BQUL = QUL(2/3, 1/3), employing 2/3 and 1/3 for completeness and soundness parameters. Be-
fore this work, Watrous [Wat01] showed a similar strong error-reducibility in the case of one-sided bounded error,
and Corollary 2 extends this to the two-sided bounded error case.
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Uselessness of quantum witnesses in logarithmic-space unitary QMA Let QMAUL(c, s) denote the class of
problems having logarithmic-space unitary QMA proof systems (i.e., such systems in which a verifier performs
a logarithmic-space unitary computation upon receiving a logarithmic-size quantum witness) with completeness c
and soundness s. Similarly to Corollary 2, the following amplifiability is immediate from Theorem 1 by taking
a function p to be logarithmic-space computable and polynomially bounded, functions c and s to be logarithmic-
space computable and to satisfy c− s ≥ 1/q for some polynomially bounded function q : Z+ → N, and func-
tions lV and lM to be logarithmically bounded.

Corollary 3. For any polynomially bounded function p : Z+ → N that is logarithmic-space computable and for any
logarithmic-space computable functions c, s : Z+ → [0, 1] satisfying c− s ≥ 1/q for some polynomially bounded
function q : Z+ → N,

QMAUL(c, s) ⊆ QMAUL(1− 2−p, 2−p).

Again this justifies defining the bounded-error class QMAUL of logarithmic-space unitary QMA proof systems
by QMAUL = QMAUL(2/3, 1/3). By a standard technique of replacing a quantum witness by a totally mixed
state as a self-prepared witness (to do this in a unitary computation, one can simply prepare sufficiently many EPR
pairs and then take a qubit from each pair), Corollary 3 together with Corollary 2 further implies the equivalence
of QMAUL and BQUL.

Corollary 4. QMAUL = BQUL.

As mentioned before, Marriott and Watrous [MW05] showed the equivalence QMAlog = BQP, the uselessness
of quantum witnesses of logarithmic size in the standard QMA proof systems with a polynomial-time verifier. In
this respect, Corollary 4 states that quantum witnesses of logarithmic size do not increase the power of logarithmic-
space unitary quantum computations at all, and indeed extends the result of Marriott and Watrous to logarithmic-
space case.

Space-efficient amplification for QMA Let QMA[lV, lM](c, s) be the time-efficient version of
QMAUSPACE[lV, lM](c, s), i.e., the class of problems having standard polynomial-time QMA proof sys-
tems with completeness c and soundness s in which a polynomial-time unitary quantum verifier receives a
quantum witness of lM(n) qubits and uses workspace of lV(n) qubits on every input of length n. As the reduction
is in time polynomial with respect to p

c−s in the proof of Theorem 1, the following amplifiability is immediate
from Theorem 1 by taking functions p, lV, and lM to be polynomially bounded, and functions c and s to be
polynomial-time computable and to satisfy c− s ≥ 1/q for some polynomially bounded function q : Z+ → N.

Corollary 5. For any polynomially bounded functions p, lV, lM : Z+ → N and for any polynomial-time computable
functions c, s : Z+ → [0, 1] satisfying c− s ≥ 1/q for some polynomially bounded function q : Z+ → N, there ex-
ists a function δ : Z+ → N that is logarithmic with respect to p

c−s such that

QMA[lV, lM](c, s) ⊆ QMA[lV + δ, lM](1− 2−p, 2−p).

Recall that the Marriott-Watrous amplification [MW05] requires δ to be inO
( p

(c−s)2
)

and the phase-estimation-

based method by Nagaj, Wocjan, and Zhang [NWZ09] requires δ to be in O
(
p log 1

c−s
)
, instead of δ in O

(
log p

c−s
)

of Corollary 5. Hence, the methods in this paper are most space-efficient among known error-reduction methods
for standard QMA proof systems, and also among those for BQP.
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Strong amplification for unitary QMAPSPACE Let QUPSPACE(c, s) denote the class of problems solv-
able by polynomial-space unitary quantum computations with completeness c and soundness s, and let
QMAUPSPACE(c, s) denote the class of problems having polynomial-space unitary QMA proof systems (i.e.,
such systems in which a verifier performs a polynomial-space unitary computation upon receiving a polynomial-
size quantum witness) with completeness c and soundness s. The following corollary states the scaled-up ver-
sions of Corollaries 2 and 3, and again is immediate from Theorem 1 by taking a function p to be polynomial-
space computable and exponentially bounded, functions c and s to be polynomial-space computable and to satisfy
c− s ≥ 2−q for some polynomially bounded function q : Z+ → N, and functions lV and lM to be polynomially
bounded (or a function lM = 0 in the case of QUPSPACE(c, s)).

Corollary 6. For any polynomially bounded function p : Z+ → N and for any polynomial-space computable func-
tions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q for some polynomially bounded function q : Z+ → N, the following
two properties hold:

(i) QUPSPACE(c, s) ⊆ QUPSPACE
(
1− 2−2p , 2−2p

)
.

(ii) QMAUPSPACE(c, s) ⊆ QMAUPSPACE
(
1− 2−2p , 2−2p

)
.

Again by a standard technique of replacing a quantum witness by a totally mixed state as a
self-prepared witness, the following corollary follows from Corollary 6 together with the fact that
RevPSPACE = PrQPSPACE = PSPACE [Ben89, Wat99], where RevPSPACE and PrQPSPACE are the
complexity classes corresponding to deterministic polynomial-space reversible computations and unbounded-error
polynomial-space quantum computations, respectively.

Corollary 7. For any polynomial-space computable functions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q for some
polynomially bounded function q : Z+ → N,

QMAUPSPACE(c, s) = PSPACE.

Now the PSPACE upper bound immediately follows for the class of problems having standard polynomial-
time QMA proof systems with exponentially small completeness-soundness gap. More precisely, for the
class QMA(c, s) of problems having standard polynomial-time QMA proof systems with completeness c and
soundness s, the following corollary holds.

Corollary 8. For any polynomially bounded function p : Z+ → N and for any polynomial-time computable func-
tions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q for some polynomially bounded function q : Z+ → N,

QMA(c, s) ⊆ PSPACE.

For QMA proof systems with exponentially small completeness-soundness gap, the PSPACE upper bound
was known previously only for the one-sided-error case (following from the result in Ref. [IKW12]), and only the
EXP upper bound was known for the two-sided-error case (following from the result in Ref. [KW00]). Natara-
jan and Wu [NW16] independently proved a statement equivalent to Corollary 8. In fact, statements equivalent to
Corollary 8 were also proved with different proofs independently by the first and third authors of the present paper
in Ref. [FL16a] (see Ref. [FL16b] also) and by the complement subset of the present authors. The first and third
authors of the present paper further proved in Refs. [FL16a, FL16b] that the converse of Corollary 8 also holds,
i.e., PSPACE is characterized by QMA proof systems with exponentially small completeness-soundness gap.
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Strong amplification for matchgate computations A matchgate is defined to be a two-qubit gate of the
form G(A,B) corresponding to the four-by-four unitary matrix in which the four corner elements form A and
the four inner-square elements form B for matrices A and B in SU(2), and all the other elements are 0. A match-
gate circuit is a quantum circuit such that: (i) the input state is a computational basis state, (ii) all the gates of the
circuit are matchgates which are applied to two neighbor qubits, and (iii) the output is a final measurement in the
computational basis on any single qubit. Matchgate computations were introduced and proved classically simulable
by Valiant [Val02]. Terhal and DiVincenzo [TD02] related them to noninteracting-fermion quantum circuits. Let
MG(c, s) denote the class of problems solvable by polynomial-time matchgate computations with completeness c
and soundness s. Using the equivalence of polynomial-time matchgate computations and logarithmic-space unitary
computations shown by Jozsa, Kraus, Miyake, and Watrous [JKMW10, Corollary 3.3], the following is immediate
from Corollary 2.

Corollary 9. For any polynomially bounded function p : Z+ → N that is logarithmic-space computable and for any
logarithmic-space computable functions c, s : Z+ → [0, 1] satisfying c− s ≥ 1/q for some polynomially bounded
function q : Z+ → N,

MG(c, s) ⊆ MG(1− 2−p, 2−p).

1.3 Roadmap

We assume familiarity with basic quantum formalism (see Refs. [NC00, KSV02, Wil13], for instance).
Section 2 provides outlines of three different proofs of the main theorem. Subsection 2.1 overviews the simplest

construction among the three, which is based on phase estimation. Subsection 2.2 then briefly explains a hybrid
construction based on both phase estimation and the Marriott-Watrous amplification, which is most efficient among
the three in terms of the number of calls of the original unitary transformation of the verifier. Subsection 2.3
sketches an alternative construction based on random guess, which is exactly implementable when the Hadamard
and any classical reversible transformations are exactly implementable. Section 3 presents precise definitions of
the model of space-bounded unitary quantum Merlin-Arthur proof systems and associated complexity classes.
Section 4 describes several procedures that are used in the main error-reduction procedures of this paper. Finally,
Section 5 provides the three proofs of the main theorem rigorously.

2 Overview of Proofs

This section provides outlines of the three different proofs of the main theorem. Consider any unitary transforma-
tion Vx of the verifier on input x, and let pacc be the maximum acceptance probability of it (and thus, pacc ≥ c(|x|)
for yes instances, and pacc ≤ s(|x|) for no instances).

2.1 Simple Construction Based on Phase Estimation

The first construction of space-efficient amplification is very simple and mainly based on phase estimation. The
key idea is to first use phase estimation so that it just reduces computation error mildly to be polynomially small
rather than directly to be exponentially small. The point is that the phase estimation is performed only once rather
than multiple times. By essentially taking the AND of the polynomially many attempts of this mildly amplified
procedure, one then achieves exponentially small soundness with keeping sufficiently large completeness (say,
1/2). Finally, one makes completeness exponentially close to one while keeping exponentially small soundness,
which is done by essentially taking the OR of the polynomially many attempts of the procedure constructed so far.
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More precisely, let H be the Hilbert space over which Vx acts, and let IH be the identity operator over H.
Further let Πinit be the projection onto the subspace spanned by the legal initial states of the QMA-type com-
putation induced by Vx, and let Πacc be the projection onto the subspace spanned by the accepting states of the
QMA-type computation associated with Vx. Consider the unitary operatorQx =

(
2V †xΠaccVx − IH

)(
2Πinit − IH

)
corresponding to one iteration of the Grover-type algorithm induced by Vx. First, one performs one-
shot phase estimation associated with Qx with l(|x|)-bit precision for a function l : Z+ → N defined by
l =

⌈
log 2π

arccos
√
s−arccos

√
c

⌉
and with mild failure probability 1

q1(|x|) , where q1 is a function in O(p) (precisely
speaking, q1 = 2(p+ dlog(p+ 2)e) + 4). From the property of the standard phase-estimation algorithm, the num-
ber of additional qubits used by the resulting procedure is determined by the function l +

⌈
log( q12 + 2)

⌉
, which is

at most linear in log p
c−s (in fact, at most log p

c−s plus a constant). The acceptance probability is mildly amplified
to at least 1− 1

q1(|x|) in the yes-instance case, while it is mildly reduced to at most 1
q1(|x|) in the no-instance case.

Let V (1)
x be the unitary operator corresponding to the procedure constructed so far. Now repeat the fol-

lowing procedure N1(|x|) times for N1 =
⌈ q2

2 log q1

⌉
, where q2 is also a function in O(p) (precisely speaking,

q2 = p+ dlog(p+ 2)e so that q1 = 2q2 + 4): One applies V (1)
x , and then increments a counter by 1 if the state cor-

responds to a rejection state of it. One further applies
(
V

(1)
x

)†, the inverse of V (1)
x , and then increments a counter

by one if any of the work qubits of V (1)
x is in state |1〉. After the repetition, one accepts if and only if the counter

value remains zero. Intuitively, these repetitions try to take the AND of the N1(|x|) attempts of V (1)
x (with some

suitable initialization try by
(
V

(1)
x

)†). The rigorous analysis shows that the initialization steps also contribute to

taking AND, so that this process is exactly equivalent to taking the AND of 2N1(|x|) attempts of V (1)
x . The num-

ber of additional qubits used by the resulting procedure is O(logN1), which is clearly at most linear in log p
c−s .

The acceptance probability is thus reduced to at most
(

1
q1(|x|)

)2N1(|x|) ≤ 2− q2(|x|) in the no-instance case, while it

is still at least 1− 2N1(|x|)
q1(|x|) > 1

2 in the yes-instance case.

Let V (2)
x be the unitary operator corresponding to the procedure constructed so far. Finally, one tries to take the

OR of 2N2(|x|) attempts of V (2)
x for a functionN2 : Z+ → N defined byN2 = dp2e, which is done by performing a

repetition similar to above. The number of additional qubits used by the resulting procedure is O(logN2), which is
clearly at most linear in log p

c−s . The acceptance probability is amplified to at least 1− 2− p(|x|) in the yes-instance
case, while it is still at most 2N2(|x|) · 2− q2(|x|) < 2− p(|x|) in the no-instance case, as desired.

2.2 Hybrid Construction of Phase Estimation and Marriott-Watrous

Recall that the necessary number of calls of the (controlled) unitary transformation U is 2l ·
⌈

1
2ε + 2

⌉
− 1 for a

phase estimation associated with U precise to l bits with failure probability ε [NC00]. Hence, a straightforward
calculation shows that the simple construction in the last subsection requires O

(
1
c−s ·

p3

log p

)
calls of Vx and its

inverse. This subsection presents an idea to construct a more efficient method that uses O
(

1
c−s ·

p2

log p

)
calls of Vx

and its inverse. The idea here is to use phase estimation so that it just achieves a very mild computation error
of some constant, rather than polynomially small. One then achieves polynomially small error by the Marriott-
Watrous amplification. The rest of the construction is essentially the same as in the simple construction in the last
subsection.

More precisely, the construction first performs one-shot phase estimation with l(|x|)-bit precision for a func-
tion l : Z+ → N defined by l =

⌈
log 2π

arccos
√
s−arccos

√
c

⌉
and with very mild failure probability 1

4 . From the property
of the standard phase-estimation algorithm, the number of additional qubits used by the resulting procedure is de-
termined by the function l + 2, which is at most log 1

c−s plus a constant, and thus, clearly at most linear in log p
c−s

when the final targeted computation error is at most 2−p for a function p : Z+ → N. The acceptance probability
is very mildly amplified to at least 3

4 in the yes-instance case, while it is very mildly reduced to at most 1
4 in the
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no-instance case.
Let V (1)

x be the unitary operator corresponding to the procedure constructed so far. Next, one further reduces
computation error still mildly to be polynomially small by performing the Marriott-Watrous amplification. By us-
ing N1(|x|) calls of V (1)

x and its inverse for a function N1 : Z+ → N defined by N1 =
⌈8 log(2p)

log e

⌉
, the acceptance

probability is mildly amplified to at least 1− 1
4(p(|x|))2 in the yes-instance case, while it is mildly reduced to at

most 1
4(p(|x|))2 in the no-instance case. The number of additional qubits used by the resulting procedure is deter-

mined by the function 2N1 + dlog(2N1 + 1)e+ 1, which is clearly at most linear in log p (and thus, at most linear
in log p

c−s also).

Let V (2)
x be the unitary operator corresponding to the procedure constructed so far. The rest of the construction

is essentially the same as in the last subsection. One can essentially take the AND of 2N2(|x|) attempts of V (2)
x for

a function N2 : Z+ → N defined by N2 =
⌈ p

2 log(2p)

⌉
to achieve acceptance probability at least 1− 1

p(|x|) for yes

instances and at most 2−2 p(|x|) for no instances. Let V (3)
x be the resulting unitary operator. One then essentially

takes the OR of 2N3(|x|) attempts of V (3)
x for a function N3 : Z+ → N defined by N3 = d p

2 log pe to achieve
acceptance probability at least 1− 2− p(|x|) for yes instances and at most 2− p(|x|) for no instances.

The total number of additional qubits required is clearly determined by a function at most linear in log p
c−s . A

straightforward calculation shows that this construction uses O
(

1
c−s ·

p2

log p

)
calls of Vx and its inverse, as claimed.

2.3 Exactly Implementable Construction Based on a Random Guess

One small drawback of the previous two constructions is that they are not exactly implementable when implemented
by quantum circuits with any gate set of finite size, due to the use of the phase-estimation algorithm. This subsection
outlines an alternative construction that is exactly implementable when the Hadamard and any classical reversible

transformations are exactly implementable. The construction uses O
(

1
(c−s)3 · p

5
2 + 1

(c−s)3
(
log 1

c−s
) 3

2 · p
)

calls of
Vx and its inverse, which is not so good as the second construction in Subsection 2.2, but is at least incomparable
with the simple construction in Subsection 2.1.

The idea is to guess pacc with mild precision of l(|x|) bits, where l : Z+ → N is the function defined by
l =

⌈
1
2 log 6q

(c−s)2
⌉

for a function q : Z+ → N defined by q =
⌈
2
(
p+ log 6p

c−s + 1
)⌉

when the final targeted com-

putation error is at most 2−p for a function p : Z+ → N. For each j in {1, . . . , 2l(|x|)}, let rj = j · 2− l(|x|)
be a possible guess of pacc. Pick an integer k from {1, . . . , 2l(|x|)} uniformly at random, and reject imme-
diately if rk = k · 2− l(|x|) < c(|x|) (so that no k can result in a good guess at pacc for no instances). Other-
wise rk is used as a guess at pacc. The point is that, for yes instances, there exists a choice of k such that

|rk − pacc| < 2− l(|x|) ≤
√

(c(|x|)−s(|x|))2
6 p(|x|) , while for no instances, it holds that |rk − pacc| > c(|x|)− s(|x|) for any

choice of k. Hence, by first applying the additive adjustment of acceptance probability [JKNN12] to obtain the
unitary transformation V (1)

x,k from Vx, and then performing REFLECTION PROCEDURE [KLGN15] using V (1)
x,k , the

acceptance probability can be mildly amplified to at least 1− (c(|x|)−s(|x|))2
6 q(|x|) in the yes-instance case, if the chosen k

corresponds to the appropriate guess rk, while the acceptance probability is at most 1−
(
c(|x|)− s(|x|)

)2 for any
guess rk.

Fix an index k of the guess rk and let V (2)
x,k be the unitary operator corresponding to the procedure constructed

so far. As in the previous subsections, one tries to essentially take the AND of 2N2(|x|) attempts of V (2)
x,k for a

function N2 : Z+ → N defined by N2 =
⌈ q

2(c−s)2
⌉
. The acceptance probability is still at least 1

2 in the yes-instance

case when the appropriate guess rk at pacc is made, while it is at most e− q(|x|) < 2− q(|x|) for any guess rk in the
no-instance case.

Let V (3)
x,k be the unitary operator corresponding to the procedure constructed so far, when the index k of rk

7



is chosen. Taking into account that k is chosen uniformly at random, the above argument results in a unitary

transformation V
(4)
x that has acceptance probability at least 2− l(|x|) · 1

2 >
1
4

√
(c(|x|)−s(|x|))2

6 q(|x|) in the yes-instance

case and at most 2− q(|x|) ≤ 2−
q(|x|)

2 ·
( c(|x|)−s(|x|)

12 p(|x|)
)
· 2− p(|x|) in the no-instance case.

Finally, as in the previous subsections, one tries to essentially take the OR of 2N4(|x|) attempts of V (4)
x

for a function N4 : Z+ → N defined by N4 =
⌈
2
√

6q
(c−s)2 · p

⌉
. The acceptance probability is amplified to at

least 1− 2− p(|x|) in the yes-instance case, and is at most 2− p(|x|) for any guess rk in the no-instance case.

3 Space-Bounded Unitary Quantum Merlin-Arthur Proof Systems

First we summarize some notations that are used in this paper. Let Σ = {0, 1} denote the binary alphabet set. In
this paper, all Hilbert spaces are complex and of dimension a power of two. For a Hilbert space H, let IH denote
the identity operator over H. A quantum register is a set of single or multiple qubits. For a quantum register R, let
IR denote the identity operator over the Hilbert space associated with R.

A space-bounded unitary quantum Merlin-Arthur (QMA) proof system, or simply called a QMA-type computa-
tion throughout this paper, is a space-bounded unitary quantum computation performed by a quantum verifier V .
As in the standard QMA proof system, V prepares a quantum register V corresponding to his/her private space,
all the qubits of which are initially in state |0〉, and receives a quantum register M storing an arbitrarily prepared
quantum witness. One of the qubit in V is designated as the output qubit of V , which without loss of generality
is assumed to be the first qubit of V. V performs a unitary quantum computation over (V,M) and then measures
the output qubit in the computational basis, where the measurement outcome 1 corresponds to acceptance. On an
input x in Σ∗, the number of private qubits in V and the length of a quantum witness in M are restricted to lV(|x|)
and lM(|x|) according to some predetermined functions lV and lM that depend only on the input length |x|. Unless
explicitly mentioned, no restriction is put on the time complexity of the unitary quantum computation of V .

Formally, for functions lV, lM : Z+ → N, an (lV, lM)-space-bounded quantum verifier V for a space-bounded
unitary quantum Merlin-Arthur proof system is a machine that on an input x in Σ∗ performs a unitary transforma-
tion Vx, where each Vx acts over lV(|x|) + lM(|x|) qubits, the first lV(|x|) qubits of which correspond to the regis-
ter V and the rest lM(|x|) qubits of which correspond to the register M. It is assumed that such a machine V corre-
sponds to a certain reasonable l-space-bounded unitary quantum computation model for some function l : Z+ → N
such that l(n) is in O(lV(n) + lM(n)). For instance, V may be an l-space classical-quantum hybrid Turing ma-
chine [Wat03, Wat09a] for unitary quantum computations, or may be a machine that first runs a classical Turing
machine of an l-space uniformly generated family of unitary quantum circuits and then performs the generated
circuit. It is stressed that all the results in this paper hold regardless of the models of space-bounded quantum
computations as long as the computations performed are unitary.

Fix an input x in Σ∗, and suppose that V receives a quantum witness ρ of lM(|x|) qubits in M. The probabil-
ity pacc(Vx, ρ) that V accepts x with a quantum witness ρ is given by

pacc(Vx, ρ) = tr ΠaccV
†
x

[
(|0〉〈0|)⊗ lV(|x|) ⊗ ρ

]
Vx,

where Πacc = |1〉〈1| ⊗ I⊗(lV(|x|)+lM(|x|)−1) is the projection onto the subspace spanned by the states in which the
designated output qubit is in state |1〉.

The class QMAUSPACE[lV, lM](c, s) of problems having (lV, lM)-space-bounded unitary QMA systems is
defined as follows.

Definition 10. Given functions lV, lM : Z+ → N and c, s : Z+ → [0, 1] satisfying c > s, a promise prob-
lem A = (Ayes, Ano) is in QMAUSPACE[lV, lM](c, s) if there exists an (lV, lM)-space-bounded quantum veri-
fier V for a space-bounded unitary quantum Merlin-Arthur proof system such that, for every x in Σ∗,
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(Completeness) if x is in Ayes, there exists a quantum witness ρ of lM(|x|) qubits that makes V accept x with
probability at least c(|x|), and

(Soundness) if x is in Ano, for any quantum witness ρ of lM(|x|) qubits, V accepts x with probability at most
s(|x|).

Note that quantum witnesses may be restricted to pure states, as allowing quantum witnesses of mixed states
does not increase the maximal accepting probability of proof systems.

The classes QMAUL(c, s) and QMAUPSPACE(c, s) corresponding to the logarithmic-space and polynomial-
space QMA-type computations, respectively, with completeness c and soundness s are then obtained by restricting
both of the functions lV and lM in Definition 10 to be logarithmically bounded and polynomially bounded.

Definition 11. Given functions c, s : Z+ → [0, 1] satisfying c > s, a promise problem A = (Ayes, Ano)
is in QMAUL(c, s) iff A is in QMAUSPACE[lV, lM](c, s) for some logarithmically bounded func-
tions lV, lM : Z+ → N.

Definition 12. Given functions c, s : Z+ → [0, 1] satisfying c > s, a promise problem A = (Ayes, Ano) is
in QMAUPSPACE(c, s) iff A is in QMAUSPACE[lV, lM](c, s) for some polynomially bounded func-
tions lV, lM : Z+ → N.

When lM = 0 in Definitions 11 and 12, respectively, the resulting classes QUL(c, s) and QUPSPACE(c, s)
correspond to the standard logarithmic-space and polynomial-space unitary quantum computations with complete-
ness c and soundness s.

Definition 13. Given functions c, s : Z+ → [0, 1] satisfying c > s, a promise problem A = (Ayes, Ano) is in
QUL(c, s) iff A is in QMAUSPACE[lV, 0](c, s) for some logarithmically bounded function lV : Z+ → N.

Definition 14. Given functions c, s : Z+ → [0, 1] satisfying c > s, a promise problem A = (Ayes, Ano) is in
QUPSPACE(c, s) iff A is in QMAUSPACE[lV, 0](c, s) for some polynomially bounded function lV : Z+ → N.

Finally, the bounded-error classes QMAUL and BQUL may be defined as follows.

Definition 15. A promise problem A = (Ayes, Ano) is in QMAUL iff A is in QMAUL(2/3, 1/3).

Definition 16. A promise problem A = (Ayes, Ano) is in BQUL iff A is in QUL(2/3, 1/3).

4 Basic Procedures

Let H be any Hilbert space of dimension a power of two. Given a unitary transformation U and two projec-
tions ∆ and Π, all acting overH, define the Hermitian operator M overH by

M = ∆U †ΠU∆,

which plays crucial roles in many well-known amplification methods in quantum computation, including the Grover
search [Gro96], the Marriott-Watrous amplification for QMA [MW05], the Nagaj-Wocjan-Zhang amplification for
QMA based on phase estimation [NWZ09], and quantum rewinding for zero-knowledge proofs against quantum
attacks [Wat09b].
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ONE-SHOT PHASE-ESTIMATION PROCEDURE associated with (U,∆,Π, t, l, ε)

1. Receive a quantum register Q that contains a state in the subspace corresponding to the projection ∆.

2. Let Q be the unitary transformation defined by Q = (2U †ΠU − IQ)(2∆− IQ). Perform the phase estima-
tion associated with Q acting over the state in Q with precision of l bits and failure probability ε, using
l +
⌈
log
(
2 + 1

2ε

)⌉
ancilla qubits. Accept if the estimated phase is in the interval (−t, t) and reject otherwise.

Figure 1: The ONE-SHOT PHASE-ESTIMATION PROCEDURE.

ONE-SHOT PHASE-ESTIMATION PROCEDURE Consider the procedure described in Figure 1, which is at the
core of the amplification method based on phase estimation proposed by Nagaj, Wocjan, and Zhang [NWZ09]. The
following proposition holds with the ONE-SHOT PHASE-ESTIMATION PROCEDURE.

Proposition 17 ([NWZ09]). Let U be a unitary transformation and ∆ and Π be projections, all acting over the
same Hilbert space. Let ε be a real number in (0, 1), let l be a positive integer, and let t be a real number in

[
0, 1

2

]
represented by l bits. Consider the Hermitian operator M = ∆U †ΠU∆. The following two properties hold:

(Completeness) Suppose that M has an eigenstate |φλ〉 with its associated eigenvalue λ satisfying that
1
π arccos

√
λ ≤ t. Then, the ONE-SHOT PHASE-ESTIMATION PROCEDURE associated with (U,∆,Π, t, l, ε)

results in acceptance with probability 1− ε when the state |φλ〉 is received in register Q in Step 1.

(Soundness) Suppose that all the eigenvalues λ of M are such that 1
π arccos

√
λ ≥ t+ 2−l. Then, the ONE-SHOT

PHASE-ESTIMATION PROCEDURE associated with (U,∆,Π, t, l, ε) results in acceptance with probability
at most ε regardless of the quantum state received in register Q in Step 1.

Remark. One thing to be mentioned is that the standard phase-estimation algorithm involves inverting quantum
Fourier transformation, which cannot be implemented exactly when implemented by quantum circuits with a gate
set of finite size. Thus, one needs to approximately implement some phase-rotation gates. The number of phase-
rotation gates necessary to approximate is proportional to l2 to achieve precision of l bits in the standard imple-
mentation of a phase-estimation algorithm. This means that each phase-rotation gate must be approximated within
O
(
ε
l2

)
so that approximate implementation does not significantly affect the failure probability ε of the phase-

estimation algorithm. To prove Theorem 1 via the simple construction based on phase estimation, one needs to
perform a phase-estimation algorithm with precision l at least logarithmic with respect to p

c−s and with failure
probability ε at most polynomially small with respect to p. The standard (constructive) proofs of the Solovay-
Kitaev theorem [Kit97] (such as those found in Refs. [NC00, KSV02, DN06]) require space polylogarithmic with
respect to 1

δ when approximating within δ, which is insufficient for the purpose of proving Theorem 1 via the
simple construction based on phase estimation. Fortunately, van Melkebeek and Watson [vMW12] showed a more
space-efficient construction of the Solovay-Kitaev approximation, which uses space only logarithmic with respect
to 1

δ and can be used for the simple construction based on phase estimation to prove Theorem 1.

AND-TYPE REPETITION PROCEDURE Given a unitary transformation U and two projections ∆ and Π all
acting over a Hilbert space, consider the process of applying U to a fixed initial state |φ〉 in a quantum register Q
that is in the subspace corresponding to ∆ and then accepting if and only if the resulting state is projected onto the
subspace corresponding to Π by the projective measurement {Π, IQ −Π}. Let p denote the accepting probability
of this process. By running N independent attempts of such a process, the probability clearly becomes pN for the
event that all the attempts result in acceptance, but which requires N copies of the initial state |φ〉. When |φ〉 is

10



AND-TYPE REPETITION PROCEDURE associated with (U,∆,Π, N)

1. Let l = dlog(2N + 1)e, and prepare an l-qubit register C, where all the qubits in C are initialized to state |0〉.
Receive a quantum register Q that contains a state in the subspace corresponding to the projection ∆.

2. For j = 1 to N , perform the following:

2.1. Apply U to Q.

2.2. If the state in Q belongs to the subspace corresponding to the projection IQ −Π, apply U+1(Z2l) to C,
where U+1(Z2l) is the unitary transformation defined by

U+1(Z2l) : |j〉 7→
∣∣(j + 1) mod 2l

〉
, ∀j ∈ Z2l .

2.3. Apply U † to Q.

2.4. If the state in Q belongs to the subspace corresponding to the projection IQ −∆, apply U+1(Z2l) to C.

3. Accept if the content of C is 0 (i.e., all the qubits in C are in state |0〉), and reject otherwise.

Figure 2: The AND-TYPE REPETITION PROCEDURE.

an eigenstate of the Hermitian operator M = ∆U †ΠU∆, the following AND-TYPE REPETITION PROCEDURE

essentially simulates such independent attempts with just one copy of |φ〉.
Prepare an l-qubit register C that serves as a counter modulo 2l, where l = dlog(2N + 1)e. All the qubits in

C are initialized to state |0〉. The procedure receives a quantum register Q that contains a state in the subspace
corresponding to ∆, and then repeats N times a pair of a simulation attempt by U and an initialization attempt
by U †. After each attempt of applying U to Q, the procedure checks if the state in Q belongs to the subspace
corresponding to Π, and increments the counter in C if this check fails. Similarly, after each attempt of applying
U † to Q, it checks if the state in Q is back to a legal initial state belonging to the subspace corresponding to ∆, and
increments the counter in C if this check fails. After the repetition, the procedure accepts if and only if the counter
in C is still 0. Figure 2 presents the precise description of the AND-TYPE REPETITION PROCEDURE.

The following proposition holds with the AND-TYPE REPETITION PROCEDURE.

Proposition 18. Let U be a unitary transformation and ∆ and Π be projections, all acting over the same
Hilbert space, and let N be a positive integer. For the AND-TYPE REPETITION PROCEDURE associated with
(U,∆,Π, N), let U ′ be the unitary transformation induced by it, let ∆′ be the projection onto the subspace spanned
by the legal initial states of it, and let Π′ be the projection onto the subspace spanned by the accepting states of
it. Suppose that the Hermitian operator M = ∆U †ΠU∆ has an eigenstate |φλ〉 with its associated eigenvalue λ.
Then the state |φλ〉 ⊗ |0〉⊗l is an eigenstate of the Hermitian operator M ′ = ∆′(U ′)†Π′U ′∆′ with eigenvalue λ2N .

Proof. The unitary transformation U ′ can be written as

U ′ =
{[

∆⊗ IC + (IQ −∆)⊗ U+1(Z2l)
]
(U † ⊗ IC)

[
Π⊗ IC + (IQ −Π)⊗ U+1(Z2l)

]
(U ⊗ IC)

}N
,

whereas the projections ∆′ and Π′ can be written as

∆′ = ∆⊗ (|0〉〈0|)⊗l, Π′ = IQ ⊗ (|0〉〈0|)⊗l.
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Notice that, for any k in {1, . . . , 2N}, it holds that

(|0〉〈0|)⊗l
(
U+1(Z2l)

)k
(|0〉〈0|)⊗l = 0,

since the content of C, which starts at 0, cannot return to 0 for k applications of the increment transforma-
tion U+1(Z2l), for k ≤ 2N < 2l. This implies that M ′ can be simply written as

M ′ = ∆′(U ′)†Π′U ′∆′ =
[
∆
[
(∆U †ΠU)†

]N
(∆U †ΠU)N∆

]
⊗ (|0〉〈0|)⊗l = M2N ⊗ (|0〉〈0|)⊗l.

Hence, if |φλ〉 is an eigenstate of M with eigenvalue λ, then |φλ〉 ⊗ |0〉⊗l is an eigenstate of M ′ with eigen-
value λ2N . �

Now the following property of the AND-TYPE REPETITION PROCEDURE is immediate from Proposition 18.

Proposition 19. Let U be a unitary transformation and ∆ and Π be projections, all acting over the same Hilbert
space, and let N be a positive integer. Consider the Hermitian operator M = ∆U †ΠU∆. The following two
properties hold:

(Completeness) Suppose that M has an eigenstate |φλ〉 with its associated eigenvalue λ. Then, the AND-TYPE

REPETITION PROCEDURE associated with (U,∆,Π, N) results in acceptance with probability λ2N when
the state |φλ〉 is received in register Q in Step 1.

(Soundness) Suppose that all the eigenvalues of M are at most ε for some ε in [0, 1). Then, the AND-TYPE

REPETITION PROCEDURE associated with (U,∆,Π, N) results in acceptance with probability at most ε2N

regardless of the quantum state received in register Q in Step 1.

OR-TYPE REPETITION PROCEDURE One can also construct a procedure that essentially simulates the process
of taking OR of theN independent attempts mentioned before with just one copy of |φ〉. One now appliesU+1(Z2l)
to C when the state in Q belongs to the subspace corresponding to the projection Π at Step 2.2 of the AND-
TYPE REPETITION PROCEDURE, and rejects if and only if the content of C is 0 at Step 3 of the AND-TYPE

REPETITION PROCEDURE. The resulting procedure is called the OR-TYPE REPETITION PROCEDURE, whose
precise description is presented in Figure 3.

Similarly to the AND-TYPE REPETITION PROCEDURE, the following proposition holds with the OR-TYPE

REPETITION PROCEDURE.

Proposition 20. Let U be a unitary transformation and ∆ and Π be projections, all acting over the same
Hilbert space, and let N be a positive integer. For the OR-TYPE REPETITION PROCEDURE associated with
(U,∆,Π, N), let U ′ be the unitary transformation induced by it, let ∆′ be the projection onto the subspace
spanned by the legal initial states of it, and let Π′ be the projection onto the subspace spanned by the accept-
ing states of it. Suppose that the Hermitian operator M = ∆U †ΠU∆ has an eigenstate |φλ〉 with its associated
eigenvalue λ. Then the state |φλ〉 ⊗ |0〉⊗l is an eigenstate of the Hermitian operator M ′ = ∆′(U ′)†Π′U ′∆′ with
eigenvalue 1− (1− λ)2N .

Proof. The proof is very similar to the proof of Proposition 18. This time, the unitary transformation U ′ can be
written as

U ′ =
{[

∆⊗ IC + (IQ −∆)⊗ U+1(Z2l)
]
(U † ⊗ IC)

[
Π⊗ U+1(Z2l) + (IQ −Π)⊗ IC

]
(U ⊗ IC)

}N
,

whereas the projections ∆′ and Π′ can be written as

∆′ = ∆⊗ (|0〉〈0|)⊗l, Π′ = IQ ⊗
[
IC − (|0〉〈0|)⊗l

]
.
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OR-TYPE REPETITION PROCEDURE associated with (U,∆,Π, N)

1. Let l = dlog(2N + 1)e, and prepare an l-qubit register C, where all the qubits in C are initialized to state |0〉.
Receive a quantum register Q that contains a state in the subspace corresponding to the projection ∆.

2. For j = 1 to N , perform the following:

2.1. Apply U to Q.

2.2. If the state in Q belongs to the subspace corresponding to the projection Π, apply U+1(Z2l) to C, where
U+1(Z2l) is the unitary transformation defined by

U+1(Z2l) : |j〉 7→
∣∣(j + 1) mod 2l

〉
, ∀j ∈ Z2l .

2.3. Apply U † to Q.

2.4. If the state in Q belongs to the subspace corresponding to the projection IQ −∆, apply U+1(Z2l) to C.

3. Reject if the content of C is 0 (i.e., all the qubits in C are in state |0〉), and accept otherwise.

Figure 3: The OR-TYPE REPETITION PROCEDURE.

Again notice that, for any k in {1, . . . , 2N}, it holds that

(|0〉〈0|)⊗l
(
U+1(Z2l)

)k
(|0〉〈0|)⊗l = 0,

and thus, M ′ can be simply written as

M ′ = ∆′ −∆′(U ′)†(I(Q,C) −Π′)U ′∆′

=
{

∆−∆
[
(∆U †(IQ −Π)U)†

]N
[∆U †(IQ −Π)U ]N∆

}
⊗ (|0〉〈0|)⊗l

=
[
∆− (∆−M)2N

]
⊗ (|0〉〈0|)⊗l.

Now notice that λ|φλ〉 = M |φλ〉 = ∆M |φλ〉 = λ∆|φλ〉, and therefore at least one of ∆|φλ〉 = |φλ〉 or λ = 0
holds. If ∆|φλ〉 = |φλ〉, it obviously holds that

M ′
(
|φλ〉 ⊗ |0〉⊗l

)
=
[
1− (1− λ)2N

](
|φλ〉 ⊗ |0〉⊗l

)
.

On the other hand, when λ = 0, by using that M∆ = ∆M = M and M |φλ〉 = 0, it follows that

M ′
(
|φλ〉 ⊗ |0〉⊗l

)
=
(
∆−∆2N

)(
|φλ〉 ⊗ |0〉⊗l

)
= 0,

which is sufficient for the claim, because 1− (1− λ)2N = 0 in this case. �

Now the following property of the OR-TYPE REPETITION PROCEDURE is immediate from Proposition 20.

Proposition 21. Let U be a unitary transformation and ∆ and Π be projections, all acting over the same Hilbert
space, and let N be a positive integer. Consider the Hermitian operator M = ∆U †ΠU∆. The following two
properties hold:

(Completeness) Suppose thatM has an eigenstate |φλ〉with its associated eigenvalue λ. Then, the OR-TYPE REP-
ETITION PROCEDURE associated with (U,∆,Π, N) results in acceptance with probability 1− (1− λ)2N

when the state |φλ〉 is received in register Q in Step 1.
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MARRIOTT-WATROUS AMPLIFICATION PROCEDURE associated with (U,∆,Π, N, t)

1. Let l = dlog(2N + 1)e. Prepare a single-qubit register Bj for each j in {0, . . . , 2N}, and an l-qubit regis-
ter C, where all the qubits in Bj and C are initialized to state |0〉. Receive a quantum register Q that contains
a state in the subspace corresponding to the projection ∆.

2. For j = 1 to N , perform the following:

2.1. Apply U to Q.

2.2. If the state in Q belongs to the subspace corresponding to the projection IQ −Π, apply the Pauli trans-
formation X (i.e., the NOT transformation) to Bj .

2.3. Apply U † to Q.

2.4. If the state in Q belongs to the subspace corresponding to the projection IQ −∆, apply X to Bj+1.

3. For j = 1 to 2N , perform the following:
If the content of Bj is the same as that of Bj−1, apply U+1(Z2l) to C, where U+1(Z2l) is the unitary
transformation defined by

U+1(Z2l) : |j〉 7→
∣∣(j + 1) mod 2l

〉
, ∀j ∈ Z2l .

4. Accept if the content of C is at least t (when viewed as an integer in Z2l), and reject otherwise.

Figure 4: The MARRIOTT-WATROUS AMPLIFICATION PROCEDURE.

(Soundness) Suppose that all the eigenvalues of M are at most ε for some ε in [0, 1). Then, the OR-TYPE

REPETITION PROCEDURE associated with (U,∆,Π, N) results in acceptance with probability at most
1− (1− ε)2N regardless of the quantum state received in register Q in Step 1.

MARRIOTT-WATROUS AMPLIFICATION PROCEDURE Consider the procedure described in Figure 4, which
is exactly the amplification method (described in a general form) proposed by Marriott and Watrous [MW05].

The following proposition holds with the MARRIOTT-WATROUS AMPLIFICATION PROCEDURE.

Proposition 22 ([MW05]). Let U be a unitary transformation and ∆ and Π be projections, all acting over
the same Hilbert space. Let N and t be positive integers satisfying t ≤ 2N . Consider the Hermitian opera-
tor M = ∆U †ΠU∆. The following two properties hold:

(Completeness) Suppose that M has an eigenstate |φλ〉 with its associated eigenvalue λ ≥ t
2N + ε for some

ε in
(
0, 1− t

2N

]
. Then, the MARRIOTT-WATROUS AMPLIFICATION PROCEDURE associated with

(U,∆,Π, N, t) results in acceptance with probability greater than 1− e−4ε2N when the state |φλ〉 is re-
ceived in register Q in Step 1.

(Soundness) Suppose that all the eigenvalues of M are at most t
2N − ε for some ε in

(
0, t

2N

]
. Then, the

MARRIOTT-WATROUS AMPLIFICATION PROCEDURE associated with (U,∆,Π, N, t) results in acceptance
with probability less than e−4ε2N regardless of the quantum state received in register Q in Step 1.
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ADDITIVE ADJUSTMENT PROCEDURE associated with (U,∆,Π, l, k)

1. Prepare a single-qubit register B and an l-qubit register R, where all the qubits in B and R are initialized to
state |0〉. Receive a quantum register Q that contains a state in the subspace corresponding to the projection ∆.

2. Apply the Hadamard transformation H to each qubit in (B,R), and apply U to Q.

3. Accept either if B contains 0 and the state in Q belongs to the subspace corresponding to Π or if B contains
1 and the content of R is greater than k (when viewed as an integer in {1, . . . , 2l}), and reject otherwise.

Figure 5: The ADDITIVE ADJUSTMENT PROCEDURE.

ADDITIVE ADJUSTMENT PROCEDURE For a Hilbert space Hj for each j in {1, 2}, consider a unitary trans-
formation Uj and two projections ∆j and Πj , all acting over Hj . Define the Hermitian operator Mj over Hj for
each j in {1, 2} by Mj = ∆jU

†
jΠjUj∆j .

Now define a Hilbert spaceH′ defined byH′ = B ⊗H1 ⊗H2, where B = C(Σ) is a Hilbert space correspond-
ing to a single qubit. Let

∆′ = |0〉〈0| ⊗∆1 ⊗∆2, Π′ = |0〉〈0| ⊗Π1 ⊗ IH2 + |1〉〈1| ⊗ IH1 ⊗Π2, U ′ = H ⊗ U1 ⊗ U2,

where H denotes the Hadamard transformation, and further let M ′ = ∆′(U ′)†Π′U ′∆′. A straightforward calcula-
tion shows that

M ′ =
1

2
(|0〉〈0| ⊗M1 ⊗∆1 + |0〉〈0| ⊗∆2 ⊗M2).

Suppose that, for each j in {1, 2}, the Hermitian operator Mj has an eigenstate (i.e., the normalized eigenvec-
tor) |φj,λj 〉 with its associated eigenvalue λj . It is easy to see that

M ′(|0〉 ⊗ |φ1,λ1〉 ⊗ |φ2,λ2〉) =
λ1 + λ2

2
(|0〉 ⊗ |φ1,λ1〉 ⊗ |φ2,λ2〉).

This implies that M ′ has an eigenstate |0〉 ⊗ |φ1,λ1〉 ⊗ |φ2,λ2〉 with eigenvalue λ1+λ2
2 , which is implicit in the

additive adjustment technique of acceptance probability proposed in Ref. [JKNN12]. This leads to the following
ADDITIVE ADJUSTMENT PROCEDURE presented in Figure 5.

The following proposition is immediate from the argument above.

Proposition 23. Let U be a unitary transformation and ∆ and Π be projections, all acting over the same Hilbert
space, and let l be a positive integer and k be an integer in {1, . . . , 2l}. For the ADDITIVE ADJUSTMENT

PROCEDURE associated with (U,∆,Π, l, k), let U ′ be the unitary transformation induced by it, let ∆′ be the
projection onto the subspace spanned by the legal initial states of it, and let Π′ be the projection onto the sub-
space spanned by the accepting states of it. Suppose that the Hermitian operator M = ∆U †ΠU∆ has an eigen-
state |φλ〉 with its associated eigenvalue λ. Then the state |0〉 ⊗ |φλ〉 ⊗ |0〉⊗l is an eigenstate of the Hermitian
operator M ′ = ∆′(U ′)†Π′U ′∆′ with eigenvalue 1

2 + 1
2

(
λ− k

2l

)
.

Now the following property of the ADDITIVE ADJUSTMENT PROCEDURE is immediate from Proposition 23.

Proposition 24. Let U be a unitary transformation and ∆ and Π be projections, all acting over the same Hilbert
space. Consider the Hermitian operator M = ∆U †ΠU∆. For any positive integer l and any integer k in
{1, . . . , 2l}, the following two properties hold:
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REFLECTION PROCEDURE associated with (U,∆,Π)

1. Receive a quantum register Q that contains a state in the subspace corresponding to the projection ∆.

2. Apply U to Q.

3. Perform a phase-flip (i.e., multiply the phase by −1) if the state in Q belongs to the subspace corresponding
to the projection Π.

4. Apply U † to Q.

5. Reject if the state in Q belongs to the subspace corresponding to ∆, and accept otherwise.

Figure 6: The REFLECTION PROCEDURE.

(Completeness) Suppose that M has an eigenstate |φλ〉 with its associated eigenvalue λ. Then, the AD-
DITIVE ADJUSTMENT PROCEDURE associated with (U,∆,Π, l, k) results in acceptance with probabil-
ity 1

2 + 1
2

(
λ− k

2l

)
when the state |φλ〉 is received in register Q in Step 1.

(Soundness) Suppose that all the eigenvalues of M are at most ε for some ε in [0, 1). Then, the ADDITIVE

ADJUSTMENT PROCEDURE associated with (U,∆,Π, l, k) results in acceptance with probability at most
1
2 + 1

2

(
ε− k

2l

)
regardless of the quantum state received in register Q in Step 1.

REFLECTION PROCEDURE Finally, consider the procedure described in Figure 6, which is exactly the RE-
FLECTION PROCEDURE in a general form originally developed in Ref. [KLGN15].

The following proposition holds with the REFLECTION PROCEDURE.

Proposition 25 ([KLGN15]). Let U be a unitary transformation and ∆ and Π be projections, all acting over the
same Hilbert space. Consider the Hermitian operator M = ∆U †ΠU∆. The following two properties hold:

(Completeness) Suppose that M has an eigenstate |φλ〉 with its associated eigenvalue λ. Then, the REFLECTION

PROCEDURE associated with (U,∆,Π) results in acceptance with probability 4λ(1− λ) when the state |φλ〉
is received in register Q in Step 1.

(Soundness) Suppose that none of the eigenvalues of M is in the interval
(

1
2 − ε,

1
2 + ε

)
for some ε in

(
0, 1

2

]
.

Then, the REFLECTION PROCEDURE associated with (U,∆,Π) results in acceptance with probability at
most 1− 4ε2 regardless of the quantum state received in register Q in Step 1.

5 Space-Efficient Amplification Methods

This section rigorously proves Theorem 1 in the three different ways.
Throughout this section, consider any QMA-type computation for a problem A = (Ayes, Ano) induced by a

family {Vx}x∈Σ∗ of a unitary transformation Vx of the verifier on input x in Σ∗ that acts over a quantum regis-
ter Q = (V,M), where V is the quantum register consisting of all the private qubits of the verifier, and M is the one
for storing a received quantum witness. Let Πinit be the projection onto the subspace spanned by the legal initial
states of the QMA-type computation induced by Vx (i.e., the subspace spanned by those in which all the qubits in
V is in state |0〉) and let Πacc be the projection onto the subspace spanned by the accepting states of the QMA-type
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MILD AMPLIFICATION WITH PHASE ESTIMATION associated with (Vx, p)

Define a function l : Z+ → N by l =
⌈
log 2π

arccos
√
s−arccos

√
c

⌉
and let t : Z+ →

[
0, 1

2

]
be a function such that,

for every nonnegative integer n, t(n) is an approximation of 1
2π

(
arccos

√
c(n) + arccos

√
s(n)

)
with l(n)-bit

precision. Let Πinit and Πacc be the projections onto the subspaces spanned by the legal initial states and the
accepting states, respectively, in the verification with Vx.
Perform the ONE-SHOT PHASE-ESTIMATION PROCEDURE associated with

(
Vx,Πinit,Πacc,t(|x|),l(|x|), 1

p(|x|)
)
.

Figure 7: The MILD AMPLIFICATION WITH PHASE ESTIMATION.

computation associated with Vx (i.e., the subspace spanned by states for which the designated output qubit of Vx is
in state |0〉). The maximum eigenvalue of the Hermitian operator Mx = ΠinitV

†
xΠaccVxΠinit exactly corresponds

to the maximum acceptance probability of the verifier on input x over all possible quantum witnesses received in
M. Hence, Mx has an eigenvalue at least c(|x|) if x is in Ayes, while all eigenvalues of Mx are at most s(|x|)
if x is in Ano, where c, s : Z+ → [0, 1] are functions that provide completeness and soundness conditions of the
QMA-type computation induced by {Vx}x∈Σ∗ , respectively.

5.1 Simple Construction Based on Phase Estimation

The first proof is via the simple construction based on phase estimation.

Mild amplification with a phase estimation Fix a function p : Z+ → N and functions c, s : Z+ → [0, 1] satisfy-
ing c > s, arbitrarily. Let l : Z+ → N be a function defined by

l =

⌈
log

2π

arccos
√
s− arccos

√
c

⌉
,

and let t : Z+ →
[
0, 1

2

]
be a function such that, for every nonnegative integer n, t(n) is an approximation of

1
2π

(
arccos

√
c(n) + arccos

√
s(n)

)
with l(n)-bit precision.

Fix an input x. Given the triplet (Vx,Πinit,Πacc), one constructs the ONE-SHOT PHASE-ESTIMATION PRO-
CEDURE associated with

(
Vx,Πinit,Πacc, t(|x|), l(|x|), 1

p(|x|)
)
. The resulting procedure is called the MILD AM-

PLIFICATION WITH PHASE ESTIMATION, and is summarized in Figure 7.
The following lemma is proved by using the MILD AMPLIFICATION WITH PHASE ESTIMATION combined

with the properties of the ONE-SHOT PHASE-ESTIMATION PROCEDURE stated in Proposition 17.

Lemma 26. For any functions p, lV, lM : Z+ → N and any functions c, s : Z+ → [0, 1] satisfying c > s, there exists
a function δ : Z+ → N that is logarithmic with respect to p

c−s such that

QMAUSPACE[lV, lM](c, s) ⊆ QMAUSPACE[lV + δ, lM]

(
1− 1

p
,

1

p

)
.

Proof. Let A = (Ayes, Ano) be a problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-
space-bounded quantum verifier witnessing this membership. Fix a function p : Z+ → N and an input x in Σ∗.
Consider the ONE-SHOT PHASE-ESTIMATION PROCEDURE associated with

(
Vx,Πinit,Πacc, t(|x|), l(|x|), 1

p(|x|)
)
,

which is exactly what the MILD AMPLIFICATION WITH PHASE ESTIMATION associated with (Vx, p) performs.
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SOUNDNESS ERROR REDUCTION associated with (Vx, p)

Define a function N : Z+ → N by N =
⌈ p

2 log(2p+4)

⌉
. Consider the MILD AMPLIFICATION WITH PHASE ES-

TIMATION associated with (Vx, 2p+ 4). Let V ′x be the unitary transformation induced by it, let Π′init be the
projection onto the subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the
subspace spanned by the accepting states of it.
Perform the AND-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
.

Figure 8: The SOUNDNESS ERROR REDUCTION.

From Proposition 17, it holds that, if x is inAyes, the ONE-SHOT PHASE-ESTIMATION PROCEDURE associated
with

(
Vx,Πinit,Πacc, t(|x|), l(|x|), 1

p(|x|)
)

results in acceptance with probability at least 1− 1
p(|x|) , while if x is in

Ano, it results in acceptance with probability at most 1
p(|x|) , which shows the completeness and soundness.

The ONE-SHOT PHASE-ESTIMATION PROCEDURE associated with
(
Vx,Πinit,Πacc, t(|x|), l(|x|), 1

p(|x|)
)

uses

extra workspace of δ(|x|) = l(|x|) +
⌈
log
(p(|x|)

2 + 2
)⌉

qubits. As is proved in Ref [NWZ09], the func-
tion l =

⌈
log 2π

arccos
√
s−arccos

√
c

⌉
is logarithmic with respect to 1

c−s , and thus, the used extra workspace is loga-
rithmic with respect to p

c−s , as claimed. �

Soundness error-reduction Again fix arbitrarily a function p : Z+ → N and functions c, s : Z+ → [0, 1] satisfy-
ing c > s, and let N : Z+ → N be a function defined by

N =
⌈ p

2 log(2p+ 4)

⌉
.

Fix an input x. Given the pair (Vx, p), consider the MILD AMPLIFICATION WITH PHASE ESTIMATION asso-
ciated with (Vx, 2p+ 4). Let V ′x be the unitary transformation induced by it, let Π′init be the projection onto the
subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the subspace spanned by the ac-
cepting states of it. From the triplet

(
V ′x,Π

′
init,Π

′
acc

)
and a positive integer N(|x|), one constructs the AND-TYPE

REPETITION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, and performs it. The resulting procedure is

called the SOUNDNESS ERROR REDUCTION, and is summarized in Figure 8.
The following lemma is proved by using the SOUNDNESS ERROR REDUCTION combined with the properties

of the MILD AMPLIFICATION WITH PHASE ESTIMATION used for proving Lemma 26.

Lemma 27. For any functions p, lV, lM : Z+ → N and any functions c, s : Z+ → [0, 1] satisfying c > s, there exists
a function δ : Z+ → N that is logarithmic with respect to p

c−s such that

QMAUSPACE[lV, lM](c, s) ⊆ QMAUSPACE[lV + δ, lM]

(
1

2
, 2−p

)
.

Proof. Let A = (Ayes, Ano) be a problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-
space-bounded quantum verifier witnessing this membership. Fix a function p : Z+ → N and an input x in Σ∗. The
lemma is proved by considering the SOUNDNESS ERROR REDUCTION associated with (Vx, p).

First consider the MILD AMPLIFICATION WITH PHASE ESTIMATION associated with (Vx, 2p+ 4). Let V ′x be
the unitary transformation induced by it, let Π′init be the projection onto the subspace spanned by the legal initial
states of it, and let Π′acc be the projection onto the subspace spanned by the accepting states of it.
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Lemma 26 and its proof ensure that A is in QMAUSPACE[lV + δ1, lM]
(
1− 1

2p+4 ,
1

2p+4

)
for some func-

tion δ1 : Z+ → N that is logarithmic with respect to p
c−s , and this inclusion is certified by the MILD AMPLIFI-

CATION WITH PHASE ESTIMATION associated with (Vx, 2p+ 4). This in particular implies that the Hermitian
operator M ′x = Π′init(V

′
x)†Π′accV

′
xΠ′init has an eigenvalue at least 1− 1

2 p(|x|)+4 if x is in Ayes, while all the eigen-
values of M ′x are at most 1

2 p(|x|)+4 if x is in Ano.
Now consider the AND-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, which is

exactly what the SOUNDNESS ERROR REDUCTION associated with (Vx, p) performs. By Proposition 19, the
AND-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
results in acceptance with prob-

ability at least (
1− 1

2 p(|x|) + 4

)2N(|x|)
>

(
1− 1

2 p(|x|) + 4

)p(|x|)+2

>
1

2

if x is in Ayes, and at most(
1

2 p(|x|) + 4

)2N(|x|)
≤
(

2− log(2 p(|x|)+4)
) p(|x|)

log(2 p(|x|)+4)
= 2− p(|x|)

if x is in Ano, and the completeness and soundness follows.
The AND-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
uses extra workspace

(relative to V ′x) of δ2(|x|) qubits for the function δ2 : Z+ → N defined by δ2 = dlog(2N + 1)e. As
N =

⌈ p
2 log(2p+4)

⌉
, δ2 is clearly logarithmic with respect to p, and thus, with respect to p

c−s also. Hence, the
SOUNDNESS ERROR REDUCTION associated with (Vx, p) uses extra workspace (relative to Vx) of logarithmically
many qubits with respect to p

c−s also (which is determined by a function δ = δ1 + δ2), as desired. �

Space-efficient error reduction based on phase estimation Again fix arbitrarily a function p : Z+ → N and
functions c, s : Z+ → [0, 1] satisfying c > s, and let N : Z+ → N be a function defined by

N =
⌈p

2

⌉
.

Fix an input x. Given the pair (Vx, p), consider the SOUNDNESS ERROR REDUCTION associated with(
Vx, p+ dlog(p+ 2)e

)
. Let V ′x be the unitary transformation induced by it, let Π′init be the projection onto the

subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the subspace spanned by the
accepting states of it. From the triplet

(
V ′x,Π

′
init,Π

′
acc

)
and a positive integer N(|x|), one constructs the OR-TYPE

REPETITION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, and performs it. The resulting procedure is

called the SPACE-EFFICIENT ERROR REDUCTION BASED ON PHASE ESTIMATION, and is summarized in Fig-
ure 9.

Now Theorem 1, the main theorem of this paper, is ready to be proved by using the SPACE-EFFICIENT ERROR

REDUCTION BASED ON PHASE ESTIMATION combined with the properties of the SOUNDNESS ERROR REDUC-
TION used for proving Lemma 27.

Proof of Theorem 1 (via the simple construction based on phase estimation) . Let A = (Ayes, Ano) be a problem
in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-space-bounded quantum verifier witnessing
this membership. Fix a function p : Z+ → N and an input x in Σ∗. The theorem is proved by considering the
SPACE-EFFICIENT ERROR REDUCTION BASED ON PHASE ESTIMATION associated with (Vx, p).

First consider the SOUNDNESS ERROR REDUCTION associated with
(
Vx, p+ dlog(p+ 2)e

)
. Let V ′x be the

unitary transformation induced by it, let Π′init be the projection onto the subspace spanned by the legal initial states
of it, and let Π′acc be the projection onto the subspace spanned by the accepting states of it.
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SPACE-EFFICIENT ERROR REDUCTION BASED ON PHASE ESTIMATION associated with (Vx, p)

Define a function N : Z+ → N by N =
⌈p

2

⌉
. Consider the SOUNDNESS ERROR REDUCTION associated with(

Vx, p+ dlog(p+ 2)e
)
. Let V ′x be the unitary transformation induced by it, let Π′init be the projection onto the

subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the subspace spanned by the
accepting states of it.
Perform the OR-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
.

Figure 9: The SPACE-EFFICIENT ERROR REDUCTION BASED ON PHASE ESTIMATION.

Lemma 27 and its proof ensure that A is in QMAUSPACE[lV + δ1, lM]
(

1
2 ,

1
p+2 · 2

−p) for some func-
tion δ1 : Z+ → N that is logarithmic with respect to p

c−s , and this inclusion is certified by the SOUNDNESS ER-
ROR REDUCTION associated with

(
Vx, p+ dlog(p+ 2)e

)
. This in particular implies that the Hermitian opera-

tor M ′x = Π′init(V
′
x)†Π′accV

′
xΠ′init has an eigenvalue at least 1

2 if x is in Ayes, while all the eigenvalues of M ′x are at
most 1

p(|x|)+2 · 2
− p(|x|) if x is in Ano.

Now consider the OR-TYPE REPETITION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, which is

exactly what the SPACE-EFFICIENT ERROR REDUCTION BASED ON PHASE ESTIMATION associated with (Vx, p)
performs. By Proposition 21, the OR-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
results in acceptance with probability at least

1−
(

1− 1

2

)2N(|x|)
≥ 1− 2− p(|x|)

if x is in Ayes, and at most

1−
(

1− 1

p(|x|) + 2
· 2− p(|x|)

)2N(|x|)
< 1−

(
1− 1

p(|x|) + 2
· 2− p(|x|)

)p(|x|)+2

< 2− p(|x|)

if x is in Ano, and the completeness and soundness follows.
The OR-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
uses extra workspace (rel-

ative to V ′x) of δ2(|x|) qubits for the function δ2 : Z+ → N defined by δ2 = dlog(2N + 1)e. As N =
⌈p

2

⌉
, δ2 is

clearly logarithmic with respect to p, and thus, with respect to p
c−s also. Hence, the SPACE-EFFICIENT ERROR

REDUCTION BASED ON PHASE ESTIMATION associated with (Vx, p) uses extra workspace (relative to Vx) of log-
arithmically many qubits with respect to p

c−s also (which is determined by a function δ = δ1 + δ2), as desired. �

Recall that the necessary number of calls of the (controlled) unitary transformation U is 2l ·
⌈

1
2ε + 2

⌉
− 1 for

a phase estimation associated with U precise to l bits with failure probability ε [NC00]. Hence, a straightforward
calculation shows that the SPACE-EFFICIENT ERROR REDUCTION BASED ON PHASE ESTIMATION associated
with (Vx, p) uses O

(
1
c−s ·

p3

log p

)
calls of Vx and its inverse.

5.2 Hybrid construction of phase estimation and Marriott-Watrous

The second proof is based on the hybrid construction of phase estimation and Marriott-Watrous.

Very mild amplification with a phase estimation Fix functions c, s : Z+ → [0, 1] satisfying c > s, arbitrarily.
Again let l : Z+ → N be a function defined by

l =

⌈
log

2π

arccos
√
s− arccos

√
c

⌉
,
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VERY MILD AMPLIFICATION WITH PHASE ESTIMATION associated with Vx

Define a function l : Z+ → N by l =
⌈
log 2π

arccos
√
s−arccos

√
c

⌉
and let t : Z+ →

[
0, 1

2

]
be a function such that,

for every nonnegative integer n, t(n) is an approximation of 1
2π

(
arccos

√
c(n) + arccos

√
s(n)

)
with l(n)-bit

precision. Let Πinit and Πacc be the projections onto the subspaces spanned by the legal initial states and the
accepting states, respectively, in the verification with Vx.
Perform the ONE-SHOT PHASE-ESTIMATION PROCEDURE associated with

(
Vx,Πinit,Πacc, t(|x|), l(|x|), 1

4

)
.

Figure 10: The VERY MILD AMPLIFICATION WITH PHASE ESTIMATION.

and let t : Z+ →
[
0, 1

2

]
be a function such that, for every nonnegative integer n, t(n) is an approximation of

1
2π

(
arccos

√
c(n) + arccos

√
s(n)

)
with l(n)-bit precision.

Fix an input x. Given the triplet (Vx,Πinit,Πacc), one constructs the ONE-SHOT PHASE-ESTIMATION PRO-
CEDURE associated with

(
Vx,Πinit,Πacc, t(|x|), l(|x|), 1

4

)
. The resulting procedure is called the VERY MILD

AMPLIFICATION WITH PHASE ESTIMATION, and is summarized in Figure 10.
In fact, the VERY MILD AMPLIFICATION WITH PHASE ESTIMATION associated with Vx is nothing but the

MILD AMPLIFICATION WITH PHASE ESTIMATION associated with (Vx, 4). Hence, the following lemma is im-
mediate by using the VERY MILD AMPLIFICATION WITH PHASE ESTIMATION combined with Lemma 26 and its
proof.

Lemma 28. For any functions lV, lM : Z+ → N and any functions c, s : Z+ → [0, 1] satisfying c > s, there exists
a function δ : Z+ → N that is logarithmic with respect to 1

c−s such that

QMAUSPACE[lV, lM](c, s) ⊆ QMAUSPACE[lV + δ, lM]

(
3

4
,
1

4

)
.

Mild amplification with Marriott-Watrous Fix a function p : Z+ → N and functions c, s : Z+ → [0, 1] satisfy-
ing c > s, arbitrarily. Let N : Z+ → N be a function defined by

N =

⌈
4 log p

log e

⌉
.

Fix an input x. Given the pair (Vx, p), consider the VERY MILD AMPLIFICATION WITH PHASE ESTIMA-
TION associated with Vx. Let V ′x be the unitary transformation induced by it, let Π′init be the projection onto
the subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the subspace spanned
by the accepting states of it. From the triplet

(
V ′x,Π

′
init,Π

′
acc

)
and a positive integer N(|x|), one constructs the

MARRIOTT-WATROUS AMPLIFICATION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, and performs it.

The resulting procedure is called the MILD AMPLIFICATION WITH MARRIOTT-WATROUS, and is summarized in
Figure 11.

Now Lemma 26 is alternatively proved by using the MILD AMPLIFICATION WITH MARRIOTT-WATROUS

combined with the properties of the MARRIOTT-WATROUS AMPLIFICATION PROCEDURE stated in Proposition 22.

Proof of Lemma 26 (via the hybrid construction of phase estimation and Marriott-Watrous) . LetA = (Ayes,Ano)
be a problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-space-bounded quantum ver-
ifier witnessing this membership. Fix a function p : Z+ → N and an input x in Σ∗. The lemma is proved by
considering the MILD AMPLIFICATION WITH MARRIOTT-WATROUS associated with (Vx, p).
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MILD AMPLIFICATION WITH MARRIOTT-WATROUS associated with (Vx, p)

Define a function N : Z+ → N by N =
⌈4 log p

log e

⌉
. Consider the VERY MILD AMPLIFICATION WITH PHASE

ESTIMATION associated with Vx. Let V ′x be the unitary transformation induced by it, let Π′init be the projection
onto the subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the subspace
spanned by the accepting states of it.
Perform the MARRIOTT-WATROUS AMPLIFICATION PROCEDURE associated with(
V ′x,Π

′
init,Π

′
acc, N(|x|), N(|x|)

)
.

Figure 11: The MILD AMPLIFICATION WITH MARRIOTT-WATROUS.

First consider the VERY MILD AMPLIFICATION WITH PHASE ESTIMATION associated with Vx. Let V ′x be the
unitary transformation induced by it, let Π′init be the projection onto the subspace spanned by the legal initial states
of it, and let Π′acc be the projection onto the subspace spanned by the accepting states of it.

Lemma 28 and its proof ensure that A is in QMAUSPACE[lV + δ1, lM]
(

3
4 ,

1
4

)
for some function δ1 : Z+ → N

that is logarithmic with respect to 1
c−s , and this inclusion is certified by the VERY MILD AMPLIFICA-

TION WITH PHASE ESTIMATION associated with Vx. This in particular implies that the Hermitian opera-
tor M ′x = Π′init(V

′
x)†Π′accV

′
xΠ′init has an eigenvalue at least 3

4 if x is in Ayes, while all the eigenvalues of M ′x
are at most 1

4 if x is in Ano.
Now consider the MARRIOTT-WATROUS AMPLIFICATION PROCEDURE associated with(

V ′x,Π
′
init,Π

′
acc, N(|x|), N(|x|)

)
, which is exactly what the MILD AMPLIFICATION WITH MARRIOTT-WATROUS

associated with (Vx, p) performs. By Proposition 22, the MARRIOTT-WATROUS AMPLIFICATION PROCEDURE

associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|), N(|x|)

)
results in acceptance with probability at least

1− e−
N(|x|)

4 ≥ 1− e−
log p(|x|)

log e = 1− 1

p(|x|)

if x is in Ayes, and at most

e−
N(|x|)

4 ≤ e−
log p(|x|)

log e =
1

p(|x|)
if x is in Ano, and the completeness and soundness follows.

The MARRIOTT-WATROUS AMPLIFICATION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|), N(|x|)

)
uses extra workspace (relative to V ′x) of δ2(|x|) qubits for the function δ2 : Z+ → N defined by
δ2 = 2N + dlog(2N + 1)e+ 1. As N =

⌈4 log p
log e

⌉
, δ2 is clearly logarithmic with respect to p, and thus, with re-

spect to p
c−s also. Hence, the MILD AMPLIFICATION WITH MARRIOTT-WATROUS associated with (Vx, p) uses

extra workspace (relative to Vx) of logarithmically many qubits with respect to p
c−s also (which is determined by a

function δ = δ1 + δ2), as desired. �

Soundness error-reduction The rest of the construction is very similar to that in Subsection 5.1.
Again fix arbitrarily a function p : Z+ → N and functions c, s : Z+ → [0, 1] satisfying c > s, and let

N : Z+ → N be a function defined by
N =

⌈ p

2 log(2p)

⌉
.

Fix an input x. Given the pair (Vx, p), consider the MILD AMPLIFICATION WITH MARRIOTT-WATROUS

associated with (Vx, 4p
2). Let V ′x be the unitary transformation induced by it, let Π′init be the projection onto

the subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the subspace spanned
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SOUNDNESS ERROR REDUCTION WITH HYBRID CONSTRUCTION associated with (Vx, p)

Define a function N : Z+ → N by N =
⌈ p

2 log(2p)

⌉
. Consider the MILD AMPLIFICATION WITH MARRIOTT-

WATROUS associated with (Vx, 4p
2). Let V ′x be the unitary transformation induced by it, let Π′init be the projec-

tion onto the subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the subspace
spanned by the accepting states of it.
Perform the AND-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
.

Figure 12: The SOUNDNESS ERROR REDUCTION WITH HYBRID CONSTRUCTION.

by the accepting states of it. From the triplet
(
V ′x,Π

′
init,Π

′
acc

)
and a positive integer N(|x|), one constructs the

AND-TYPE REPETITION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, and performs it. The resulting

procedure is called the SOUNDNESS ERROR REDUCTION WITH HYBRID CONSTRUCTION, and is summarized in
Figure 12.

The following lemma is proved by using the SOUNDNESS ERROR REDUCTION WITH HYBRID CONSTRUC-
TION combined with the properties of the MILD AMPLIFICATION WITH MARRIOTT-WATROUS used for proving
Lemma 26.

Lemma 29. For any functions p, lV, lM : Z+ → N and any functions c, s : Z+ → [0, 1] satisfying c > s, there exists
a function δ : Z+ → N that is logarithmic with respect to p

c−s such that

QMAUSPACE[lV, lM](c, s) ⊆ QMAUSPACE[lV + δ, lM]

(
1− 1

p
, 2−2p

)
.

Proof. Let A = (Ayes, Ano) be a problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-
space-bounded quantum verifier witnessing this membership. Fix a function p : Z+ → N and an input x in Σ∗. The
lemma is proved by considering the SOUNDNESS ERROR REDUCTION WITH HYBRID CONSTRUCTION associated
with (Vx, p).

First consider the MILD AMPLIFICATION WITH MARRIOTT-WATROUS associated with (Vx, 4p
2). Let V ′x be

the unitary transformation induced by it, let Π′init be the projection onto the subspace spanned by the legal initial
states of it, and let Π′acc be the projection onto the subspace spanned by the accepting states of it.

Lemma 26 and its proof based on the MILD AMPLIFICATION WITH MARRIOTT-WATROUS ensure that A is
in QMAUSPACE[lV + δ1, lM]

(
1− 1

4p2
, 1

4p2

)
for some function δ1 : Z+ → N that is logarithmic with respect to

p
c−s , and this inclusion is certified by the MILD AMPLIFICATION WITH MARRIOTT-WATROUS associated with
(Vx, 4p

2). This in particular implies that the Hermitian operator M ′x = Π′init(V
′
x)†Π′accV

′
xΠ′init has an eigenvalue at

least 1− 1
4(p(|x|))2 if x is in Ayes, while all the eigenvalues of M ′x are at most 1

4(p(|x|))2 if x is in Ano.
Now consider the AND-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, which

is exactly what the SOUNDNESS ERROR REDUCTION WITH HYBRID CONSTRUCTION associated with (Vx, p)
performs. By Proposition 19, the AND-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
results in acceptance with probability at least(

1− 1

4(p(|x|))2

)2N(|x|)
>

(
1− 1

4(p(|x|))2

) p(|x|)
log(2 p(|x|))+2

> 1− 1

p(|x|)
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SPACE-EFFICIENT ERROR REDUCTION BASED ON HYBRID CONSTRUCTION associated with (Vx, p)

Define a function N : Z+ → N by N =
⌈ p

2 log p

⌉
. Consider the SOUNDNESS ERROR REDUCTION WITH HY-

BRID CONSTRUCTION associated with (Vx, p). Let V ′x be the unitary transformation induced by it, let Π′init be
the projection onto the subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the
subspace spanned by the accepting states of it.
Perform the OR-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
.

Figure 13: The SPACE-EFFICIENT ERROR REDUCTION BASED ON HYBRID CONSTRUCTION.

if x is in Ayes, and at most(
1

4(p(|x|))2

)2N(|x|)
≤

[(
1

2 p(|x|)

) p(|x|)
log(2 p(|x|))

]2

= 2−2 p(|x|)

if x is in Ano, and the completeness and soundness follows.
The AND-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
uses extra workspace

(relative to V ′x) of δ2(|x|) qubits for the function δ2 : Z+ → N defined by δ2 = dlog(2N + 1)e. AsN =
⌈ p

2 log(2p)

⌉
,

δ2 is clearly logarithmic with respect to p, and thus, with respect to p
c−s also. Hence, the SOUNDNESS ERROR

REDUCTION WITH HYBRID CONSTRUCTION associated with (Vx, p) uses extra workspace (relative to Vx) of
logarithmically many qubits with respect to p

c−s also (which is determined by a function δ = δ1 + δ2), as desired.
�

Space-efficient error reduction based on hybrid construction Again fix arbitrarily a function p : Z+ → N and
functions c, s : Z+ → [0, 1] satisfying c > s, and let N : Z+ → N be a function defined by

N =
⌈ p

2 log p

⌉
.

Fix an input x. Given the pair (Vx, p), consider the SOUNDNESS ERROR REDUCTION WITH HYBRID CON-
STRUCTION associated with (Vx, p). Let V ′x be the unitary transformation induced by it, let Π′init be the projection
onto the subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the subspace spanned
by the accepting states of it. From the triplet

(
V ′x,Π

′
init,Π

′
acc

)
and a positive integer N(|x|), one constructs the

OR-TYPE REPETITION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, and performs it. The resulting

procedure is called the SPACE-EFFICIENT ERROR REDUCTION BASED ON HYBRID CONSTRUCTION, and is
summarized in Figure 13.

Now Theorem 1, the main theorem of this paper, is ready to be proved by using the SPACE-EFFICIENT ERROR

REDUCTION BASED ON HYBRID CONSTRUCTION combined with the properties of the SOUNDNESS ERROR

REDUCTION WITH HYBRID CONSTRUCTION used for proving Lemma 29.

Proof of Theorem 1 (via the hybrid construction of phase estimation and Marriott-Watrous) . LetA = (Ayes,Ano)
be a problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-space-bounded quantum ver-
ifier witnessing this membership. Fix a function p : Z+ → N and an input x in Σ∗. The theorem is proved by
considering the SPACE-EFFICIENT ERROR REDUCTION BASED ON HYBRID CONSTRUCTION associated with
(Vx, p).

First consider the SOUNDNESS ERROR REDUCTION WITH HYBRID CONSTRUCTION associated with (Vx, p).
Let V ′x be the unitary transformation induced by it, let Π′init be the projection onto the subspace spanned by the
legal initial states of it, and let Π′acc be the projection onto the subspace spanned by the accepting states of it.
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Lemma 29 and its proof ensure that A is in QMAUSPACE[lV + δ1, lM]
(
1− 1

p , 2
−2p
)

for some func-
tion δ1 : Z+ → N that is logarithmic with respect to p

c−s , and this inclusion is certified by the SOUNDNESS ERROR

REDUCTION WITH HYBRID CONSTRUCTION associated with (Vx, p). This in particular implies that the Hermitian
operator M ′x = Π′init(V

′
x)†Π′accV

′
xΠ′init has an eigenvalue at least 1− 1

p(|x|) if x is in Ayes, while all the eigenvalues

of M ′x are at most 2−2 p(|x|) if x is in Ano.
Now consider the OR-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, which

is exactly what the SPACE-EFFICIENT ERROR REDUCTION BASED ON HYBRID CONSTRUCTION associ-
ated with (Vx, p) performs. By Proposition 21, the OR-TYPE REPETITION PROCEDURE associated with(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
results in acceptance with probability at least

1−
(

1

p(|x|)

)2N(|x|)
≥ 1−

(
2− log p(|x|)

) p(|x|)
log p(|x|)

= 1− 2− p(|x|)

if x is in Ayes, and at most

1−
(

1− 2−2 p(|x|)
)2N(|x|)

< 1−
(

1− 2−2 p(|x|)
) p(|x|)

log p(|x|)+2
< 2− p(|x|)

if x is in Ano, and the completeness and soundness follows.
The OR-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
uses extra workspace (rel-

ative to V ′x) of δ2(|x|) qubits for the function δ2 : Z+ → N defined by δ2 = dlog(2N + 1)e. As N =
⌈ p

2 log p

⌉
, δ2

is clearly logarithmic with respect to p, and thus, with respect to p
c−s also. Hence, the SPACE-EFFICIENT ER-

ROR REDUCTION BASED ON HYBRID CONSTRUCTION associated with (Vx, p) uses extra workspace (relative to
Vx) of logarithmically many qubits with respect to p

c−s also (which is determined by a function δ = δ1 + δ2), as
desired. �

A straightforward calculation shows that the SPACE-EFFICIENT ERROR REDUCTION BASED ON HYBRID

CONSTRUCTION associated with (Vx, p) uses O
(

1
c−s ·

p2

log p

)
calls of Vx and its inverse.

5.3 Exactly implementable construction based on random guess

The third proof is via the exactly implementable construction based on random guess.

Mild completeness amplification with a guess Fix a function p : Z+ → N and functions c, s : Z+ → [0, 1] sat-
isfying c > s arbitrarily, and let l, C : Z+ → N be functions defined by

l =
⌈1

2
log

p

(c− s)2

⌉
, C = d2lce.

Fix an input x and a positive integer k in {1, . . . , 2l(|x|)}. Given the triplet (Vx,Πinit,Πacc) and the integer k,
one first constructs the ADDITIVE ADJUSTMENT PROCEDURE associated with

(
Vx,Πinit,Πacc, l(|x|), k

)
, if k is at

leastC(|x|) (and automatically rejects otherwise so that no k can result in a good guess at the acceptance probability
when the actual value of it is unallowably small). Let V ′x,k be the unitary transformation induced by it, let Π′init

be the projection onto the subspace spanned by the legal initial states of it, and let Π′acc,k be the projection onto
the subspace spanned by the accepting states of it. Next, from the triplet

(
V ′x,k,Π

′
init,Π

′
acc,k

)
, one constructs the

REFLECTION PROCEDURE associated with
(
V ′x,k,Π

′
init,Π

′
acc,k

)
, and performs it. The resulting procedure is called

the MILD COMPLETENESS AMPLIFICATION WITH GUESS k, and is summarized as in Figure 14.
From the properties of the ADDITIVE ADJUSTMENT PROCEDURE and the REFLECTION PROCEDURE (Propo-

sitions 24 and 25), one can show the following lemma.
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MILD COMPLETENESS AMPLIFICATION WITH GUESS k associated with (Vx, p)

Define functions l and C by l =
⌈

1
2 log p

(c−s)2
⌉

and C = d2lce. Let Πinit and Πacc be the projections onto the
subspaces spanned by the legal initial states and the accepting states, respectively, in the verification with Vx.
Given an integer k in {1, . . . , 2l(|x|)} as a guess, consider the ADDITIVE ADJUSTMENT PROCEDURE associated
with (Vx,Πinit,Πacc, l(|x|), k). Let V ′x,k be the unitary transformation induced by it, let Π′init be the projection
onto the subspace spanned by the legal initial states of it, and let Π′acc,k be the projection onto the subspace
spanned by the accepting states of it.
Reject if k < C(|x|), and continue otherwise by performing the REFLECTION PROCEDURE associated with(
V ′x,k,Π

′
init,Π

′
acc,k

)
.

Figure 14: The MILD COMPLETENESS AMPLIFICATION WITH GUESS k.

Lemma 30. Given functions lV, lM : Z+ → N and c, s : Z+ → [0, 1] satisfying c > s, let A = (Ayes, Ano) be a
problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-space-bounded quantum verifier
witnessing this membership. Then, for any function p : Z+ → N and for every x in Σ∗, letting l =

⌈
1
2 log p

(c−s)2
⌉
,

the following properties hold:

(Completeness) If x is in Ayes, there exists an integer k in {1, . . . , 2l(|x|)} as a guess such that the MILD COM-
PLETENESS AMPLIFICATION WITH GUESS k associated with (Vx, p) results in acceptance with probability

at least 1− (c(|x|)−s(|x|))2
p(|x|) .

(Soundness) If x is in Ano, for any integer k in {1, . . . , 2l(|x|)} as a guess, the MILD COMPLETENESS AM-
PLIFICATION WITH GUESS k associated with (Vx, p) results in acceptance with probability at most
1−

(
c(|x|)− s(|x|)

)2.

Proof. Let C : Z+ → N be a function defined by C = d2lce, and let Πinit and Πacc be the projections onto the
subspaces spanned by the legal initial states and the accepting states, respectively, in the verification with Vx.
For the ADDITIVE ADJUSTMENT PROCEDURE associated with (Vx,Πinit,Πacc, l(|x|), k), let V ′x,k be the unitary
transformation induced by it, let Π′init be the projection onto the subspace spanned by the legal initial states of it,
and let Π′acc,k be the projection onto the subspace spanned by the accepting states of it.

First suppose that x is in Ayes. The Hermitian operator Mx = ΠinitV
†
xΠaccVxΠinit in this case has an eigen-

value λx that is at least c(|x|).
Fix k =

⌈
2l(|x|)λx

⌉
in {C(|x|), . . . , 2l(|x|)}.

By Proposition 24, the Hermitian operator M ′x,k = Π′init

(
V ′x,k

)†
Π′acc,kV

′
x,kΠ

′
init must have an eigenvalue

λ′x,k =
1

2
− 1

2

(
k

2l(|x|)
− λx

)
,

which must satisfy that
1

2
− c(|x|)− s(|x|)

2
√
p(|x|)

≤ 1

2
− 2−(l(|x|)+1) < λ′x,k ≤

1

2

for k =
⌈
2l(|x|)λx

⌉
in {C(|x|), . . . , 2l(|x|)}.
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SOUNDNESS ERROR REDUCTION WITH GUESS k associated with (Vx, p)

Define functions l and N by l =
⌈

1
2 log 6p

(c−s)2
⌉

and N =
⌈ p

2(c−s)2
⌉
. Given an integer k in {1, . . . , 2l(|x|)},

consider the MILD COMPLETENESS AMPLIFICATION WITH GUESS k associated with (Vx, 6p). Let V ′x,k be the
unitary transformation induced by it, let Π′init be the projection onto the subspace spanned by the legal initial
states of it, and let Π′acc,k be the projection onto the subspace spanned by the accepting states of it.
Perform the AND-TYPE REPETITION PROCEDURE associated with

(
V ′x,k,Π

′
init,Π

′
acc,k, N(|x|)

)
.

Figure 15: The SOUNDNESS ERROR REDUCTION WITH GUESS k.

Hence, by Proposition 25, the REFLECTION PROCEDURE associated with
(
V ′x,k,Π

′
init,Π

′
acc,k

)
results in accep-

tance with probability at least

1−
(

k

2l(|x|)
− λx

)2

> 1− 2−2 l(|x|) ≥ 1−
(
c(|x|)− s(|x|)

)2
p(|x|)

,

which proves the completeness.
Now suppose that x is in Ano, which implies that all the eigenvalues of Mx are at most s(|x|). It follows from

Proposition 24 that, for any k in {C(|x|), . . . , 2l(|x|)}, all the eigenvalues of M ′x,k are at most

1

2
− 1

2

(
k

2l(|x|)
− s(|x|)

)
≤ 1

2
− 1

2

(
C(|x|)
2l(|x|)

− s(|x|)
)
≤ 1

2
− 1

2

(
c(|x|)− s(|x|)

)
.

Therefore, Proposition 25 ensures that, for any k in {C(|x|), . . . , 2l(|x|)}, the REFLECTION PROCEDURE associated
with

(
V ′x,k,Π

′
init,Π

′
acc,k

)
results in acceptance with probability at most

1−
(
c(|x|)− s(|x|)

)2
.

As it always rejects when k is less than C(|x|), the MILD COMPLETENESS AMPLIFICATION WITH GUESS k asso-
ciated with (Vx, p) results in acceptance with probability at most 1−

(
c(|x|)− s(|x|)

)2 for any k in {1, . . . , 2l(|x|)},
and the soundness follows. �

Soundness error reduction with a guess Again fix a function p : Z+ → N and functions c, s : Z+ → [0, 1] sat-
isfying c > s, arbitrarily. Let l, N : Z+ → N be functions defined by

l =

⌈
1

2
log

6p

(c− s)2

⌉
, N =

⌈
p

2(c− s)2

⌉
.

Fix an input x and an integer k in {1, . . . , 2l(|x|)}. Given the pair (Vx, p) and the integer k, consider the
MILD COMPLETENESS AMPLIFICATION WITH GUESS k associated with (Vx, 6p). As before, let V ′x,k be the
unitary transformation induced by it, let Π′init be the projection onto the subspace spanned by the legal initial
states of it, and let Π′acc,k be the projection onto the subspace spanned by the accepting states of it. From the
triplet

(
V ′x,k,Π

′
init,Π

′
acc,k

)
and a positive integer N(|x|), one constructs the AND-TYPE REPETITION PROCE-

DURE associated with
(
V ′x,k,Π

′
init,Π

′
acc,k, N(|x|)

)
, and performs it. The resulting procedure is called the SOUND-

NESS ERROR REDUCTION WITH GUESS k, and is summarized in Figure 15.
From the properties of the AND-TYPE REPETITION PROCEDURE and the MILD COMPLETENESS AMPLIFI-

CATION WITH GUESS k (Proposition 19 and Lemma 30), one can show the following lemma.
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Lemma 31. Given functions lV, lM : Z+ → N and c, s : Z+ → [0, 1] satisfying c > s, let A = (Ayes, Ano) be a
problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-space-bounded quantum verifier
witnessing this membership. Then, for any function p : Z+ → N and for every x in Σ∗, letting l =

⌈
1
2 log 6p

(c−s)2
⌉
,

the following properties hold:

(Completeness) If x is in Ayes, there exists an integer k in {1, . . . , 2l(|x|)} as a guess such that the SOUND-
NESS ERROR-REDUCTION WITH GUESS k associated with (Vx, p) results in acceptance with probability at
least 1

2 .

(Soundness) If x is in Ano, for any integer k in {1, . . . , 2l(|x|)} as a guess, the SOUNDNESS ERROR-REDUCTION

WITH GUESS k associated with (Vx, p) results in acceptance with probability at most 2− p(|x|).

Proof. Let C : Z+ → N be a function defined by C = d2lce, and let Πinit and Πacc be the projections onto the
subspaces spanned by the legal initial states and the accepting states, respectively, in the verification with Vx.
For the MILD COMPLETENESS AMPLIFICATION WITH GUESS k associated with (Vx, 6p), let V ′x,k be the uni-
tary transformation induced by it, let Π′init be the projection onto the subspace spanned by the legal initial states
of it, and let Π′acc,k be the projection onto the subspace spanned by the accepting states of it. Then, for a func-
tion N : Z+ → N defined by N =

⌈ p
2(c−s)2

⌉
and for the AND-TYPE REPETITION PROCEDURE associated with(

V ′x,k,Π
′
init,Π

′
acc,k, N(|x|)

)
, let V ′′x,k be the unitary transformation induced by it, let Π′′init be the projection onto

the subspace spanned by the legal initial states of it, and let Π′′acc,k be the projection onto the subspace spanned by
the accepting states of it.

First suppose that x is in Ayes. The Hermitian operator Mx = ΠinitV
†
xΠaccVxΠinit in this case has an eigen-

value λx that is at least c(|x|).
Fix k =

⌈
2l(|x|)λx

⌉
in {C(|x|), . . . , 2l(|x|)}.

By Lemma 30, the Hermitian operator M ′x,k = Π′init

(
V ′x,k

)†
Π′acc,kV

′
x,kΠ

′
init must have an eigenvalue

λ′x,k > 1−
(
c(|x|)− s(|x|)

)2
6 p(|x|)

for k =
⌈
2l(|x|)λx

⌉
in {C(|x|), . . . , 2l(|x|)}. Hence, by Proposition 19, the AND-TYPE REPETITION PROCEDURE

associated with
(
V ′x,k,Π

′
init,Π

′
acc,k, N(|x|)

)
results in acceptance with probability at least[

1−
(
c(|x|)− s(|x|)

)2
6 p(|x|)

]2N(|x|)

≥

[
1−

(
c(|x|)− s(|x|)

)2
6 p(|x|)

] p(|x|)
(c(|x|)−s(|x|))2

+2

>
1

2
,

which proves the completeness.
Now suppose that x is in Ano, which implies that all the eigenvalues of Mx are at most s(|x|). It follows from

Lemma 30 that, for any k in {C(|x|), . . . , 2l(|x|)}, all the eigenvalues of M ′x,k are at most

1−
(
c(|x|)− s(|x|)

)2
.

From Proposition 19, this implies that, for any k in {C(|x|), . . . , 2l(|x|)}, the AND-TYPE REPETITION PROCE-
DURE associated with

(
V ′x,k,Π

′
init,Π

′
acc,k, N(|x|)

)
results in acceptance with probability at most[

1−
(
c(|x|)− s(|x|)

)2]2N(|x|)
≤
[
1−

(
c(|x|)− s(|x|)

)2] p(|x|)
(c(|x|)−s(|x|))2 < e− p(|x|) < 2− p(|x|).

As it always rejects when k is less than C(|x|), the SOUNDNESS ERROR REDUCTION WITH GUESS k associated
with (Vx, p) results in acceptance with probability at most 2− p(|x|) for any k in {1, . . . , 2l(|x|)}, and the soundness
follows. �

28



SOUNDNESS ERROR REDUCTION WITH RANDOM GUESS associated with (Vx, p)

Define a function l by l =
⌈

1
2 log 6p

(c−s)2
⌉
.

Pick an integer k from {1, . . . , 2l(|x|)} uniformly at random and perform the SOUNDNESS ERROR REDUCTION

WITH GUESS k associated with (Vx, p).

Figure 16: The SOUNDNESS ERROR REDUCTION WITH RANDOM GUESS.

Soundness error reduction with a random guess Again fix arbitrarily a function p : Z+ → N and func-
tions c, s : Z+ → [0, 1] satisfying c > s, and let l : Z+ → N be a function defined by

l =

⌈
1

2
log

6p

(c− s)2

⌉
.

Fix an input x. Given the pair (Vx, p), consider choosing an integer k from {1, . . . , 2l(|x|)} uniformly at random,
and then performing the SOUNDNESS ERROR REDUCTION WITH GUESS k associated with (Vx, p). The resulting
procedure is called the SOUNDNESS ERROR REDUCTION WITH RANDOM GUESS and is summarized in Figure 16.

The following lemma is proved by using the SOUNDNESS ERROR REDUCTION WITH RANDOM GUESS com-
bined with the properties of the SOUNDNESS ERROR REDUCTION WITH GUESS k stated in Lemma 31.

Lemma 32. For any functions p, lV, lM : Z+ → N and any functions c, s : Z+ → [0, 1] satisfying c > s and
c−s

4
√

6p
> 2−p (which in particular holds when p > 2 log 4

√
3

c−s ), there exists a function δ : Z+ → N that is logarithmic
with respect to p

c−s such that

QMAUSPACE[lV, lM](c, s) ⊆ QMAUSPACE[lV + δ, lM]

(
c− s
4
√

6p
, 2−p

)
.

Proof. Let A = (Ayes, Ano) be a problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-
space-bounded quantum verifier witnessing this membership. Fix a function p : Z+ → N satisfying c−s

4
√

6p
> 2−p

and an input x in Σ∗. The lemma is proved by considering the SOUNDNESS ERROR REDUCTION WITH RANDOM

GUESS associated with (Vx, p).
Lemma 31 ensures that, if x is in Ayes, the SOUNDNESS ERROR REDUCTION WITH GUESS k associated with

(Vx, p) results in acceptance with probability at least 1
2 for some k in {1, . . . , 2l(|x|)}, while if x is in Ano, it results

in acceptance with probability at most 2− p(|x|) for any k in {1, . . . , 2l(|x|)}. Hence, obviously from its construction,
the SOUNDNESS ERROR REDUCTION WITH RANDOM GUESS associated with (Vx, p) results in acceptance with
probability at least

2− l(|x|) · 1

2
>
c(|x|)− s(|x|)

2
√

6 p(|x|)
· 1

2
=
c(|x|)− s(|x|)

4
√

6 p(|x|)

if x is in Ayes, and at most 2− p(|x|) if x is in Ano. This shows the completeness and soundness.
From the structures of the ADDITIVE ADJUSTMENT PROCEDURE, REFLECTION PROCEDURE, and the

AND-TYPE REPETITION PROCEDURE, the SOUNDNESS ERROR REDUCTION WITH GUESS k associated
with (Vx, p) uses extra workspace (relative to Vx) of δ1(|x|) qubits for the function δ1 : Z+ → N defined by
δ1 = l + dlog(2N + 1)e+ 1, where l =

⌈
1
2 log 6p

(c−s)2
⌉

and N =
⌈ p

2(c−s)2
⌉
. Hence, δ1 is clearly logarithmic with

respect to p
c−s . Therefore, the SOUNDNESS ERROR-REDUCTION WITH RANDOM GUESS associated with (Vx, p)
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SPACE-EFFICIENT AMPLIFICATION BASED ON RANDOM GUESS associated with (Vx, p)

Define functions q and N by q =
⌈
2
(
p+ log 6p

c−s + 1
)⌉

and N =
⌈

2
√

6q
c−s · p

⌉
. Consider the SOUNDNESS ER-

ROR REDUCTION WITH RANDOM GUESS associated with (Vx, q). Let V ′x be the unitary transformation induced
by it, let Π′init be the projection onto the subspace spanned by the legal initial states of it, and let Π′acc be the
projection onto the subspace spanned by the accepting states of it.
Perform the OR-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
.

Figure 17: The SPACE-EFFICIENT AMPLIFICATION BASED ON RANDOM GUESS.

uses extra workspace (relative to Vx) of logarithmically many qubits with respect to p
c−s also (which is determined

by a function δ = δ1 + 2l, as the random guess may be implemented by preparing a sufficiently many number of
EPR pairs and using each half of them), as desired. �

Space-efficient amplification based on a random guess Again fix arbitrarily a function p : Z+ → N and func-
tions c, s : Z+ → [0, 1] satisfying c > s. Let q,N : Z+ → N be functions defined by

q =

⌈
2

(
p+ log

6p

c− s
+ 1

)⌉
, N =

⌈
2
√

6q

c− s
· p
⌉
.

Fix an input x. Given the pair (Vx, p), consider the SOUNDNESS ERROR-REDUCTION WITH RANDOM GUESS

associated with (Vx, q). Let V ′x be the unitary transformation induced by it, let Π′init be the projection onto the
subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the subspace spanned by the
accepting states of it. From the triplet

(
V ′x,Π

′
init,Π

′
acc

)
and a positive integer N(|x|), one constructs the OR-TYPE

REPETITION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, and performs it. The resulting procedure is

called the SPACE-EFFICIENT AMPLIFICATION BASED ON RANDOM GUESS and is summarized in Figure 17.
Now Theorem 1, the main theorem of this paper, is ready to be proved by using the SPACE-EFFICIENT AMPLI-

FICATION BASED ON RANDOM GUESS combined with the properties of the SOUNDNESS ERROR REDUCTION

WITH RANDOM GUESS used for proving Lemma 32.

Proof of Theorem 1 (via the exactly implementable construction based on a random guess) . Let A = (Ayes, Ano)
be a problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the (lV, lM)-space-bounded quantum ver-
ifier witnessing this membership. Fix a function p : Z+ → N and an input x in Σ∗. Let The theorem is proved by
considering the SPACE-EFFICIENT AMPLIFICATION BASED ON RANDOM GUESS associated with (Vx, p).

Let q : Z+ → N be the function defined by q =
⌈
2
(
p+ log 6p

c−s + 1
)⌉

. First consider the SOUNDNESS ERROR

REDUCTION WITH RANDOM GUESS associated with (Vx, q). Let V ′x be the unitary transformation induced by it,
let Π′init be the projection onto the subspace spanned by the legal initial states of it, and let Π′acc be the projection
onto the subspace spanned by the accepting states of it.

As the function q satisfies that q > 2 log 4
√

3
c−s , and thus, that c−s

4
√

6q
> 2−q, Lemma 32 and its proof ensure

that A is in QMAUSPACE[lV + δ1, lM]
(
c−s

4
√

6q
, 2−q

)
for some function δ1 : Z+ → N that is logarithmic with re-

spect to q
c−s (and thus, with respect to p

c−s ), and this inclusion is certified by the SOUNDNESS ERROR RE-
DUCTION WITH RANDOM GUESS associated with (Vx, q). This in particular implies that the Hermitian opera-
tor M ′x = Π′init(V

′
x)†Π′accV

′
xΠ′init has an eigenvalue at least c(|x|)−s(|x|)

4
√

6 q(|x|)
if x is in Ayes, while all the eigenvalues of

M ′x are at most 2− q(|x|) if x is in Ano.
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Now consider the OR-TYPE REPETITION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
, which is

exactly what the SPACE-EFFICIENT ERROR REDUCTION BASED ON RANDOM GUESS associated with (Vx, p)
performs. By Proposition 21, the OR-TYPE REPETITION PROCEDURE associated with

(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
results in acceptance with probability at least

1−
(

1− c(|x|)− s(|x|)
4
√

6 q(|x|)

)2N(|x|)

≥ 1−
(

1− c(|x|)− s(|x|)
4
√

6 q(|x|)

) 4
√

6 q(|x|)
c(|x|)−s(|x|) ·p(|x|)

> 1− e− p(|x|) > 1− 2− p(|x|)

if x is in Ayes, and at most

1−
(

1− 2− q(|x|)
)2N(|x|)

< 2− q(|x|)+1 ·N(|x|)

< 2
− p(|x|)−log

6 p(|x|)
c(|x|)−s(|x|) · 2−

1
2
q(|x|) ·

(
2
√

6 q(|x|)
c(|x|)− s(|x|)

· p(|x|) + 1

)

< 2− p(|x|) · c(|x|)− s(|x|)
6 p(|x|)

· 1√
q(|x|)

·
(

6
√
q(|x|)

c(|x|)− s(|x|)
· p(|x|)

)
< 2− p(|x|)

if x is in Ano, where the third inequality uses the fact that 2
√

6 + 1 < 6, and the completeness and soundness
follows.

The OR-TYPE REPETITION PROCEDURE associated with
(
V ′x,Π

′
init,Π

′
acc, N(|x|)

)
uses extra workspace (rel-

ative to V ′x) of δ2(|x|) qubits for the function δ2 : Z+ → N defined by δ2 = dlog(2N + 1)e. As N =
⌈2
√

6q
c−s

⌉
and

q =
⌈
2
(
p+ log 6p

c−s + 1
)⌉

, δ2 is clearly logarithmic with respect to p
c−s . Hence, the SPACE-EFFICIENT ERROR

REDUCTION BASED ON RANDOM GUESS associated with (Vx, p) uses extra workspace (relative to Vx) of loga-
rithmically many qubits with respect to p

c−s also (which is determined by a function δ = δ1 + δ2), as desired. �
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