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Abstract

A line of work initiated by Terhal and DiVincenzo [TD02] and Bremner, Jozsa, and Shepherd
[BJS10], shows that restricted classes of quantum computation can efficiently sample from probability
distributions that cannot be exactly sampled efficiently on a classical computer, unless the PH collapses.
Aaronson and Arkhipov [AA13] take this further by considering a distribution that can be sampled ef-
ficiently by linear optical quantum computation, that under two feasible conjectures, cannot even be
approximately sampled classically within bounded total variation distance, unless the PH collapses.

In this work we use Quantum Fourier Sampling to construct a class of distributions that can be
sampled exactly by a quantum computer. We then argue that these distributions cannot be approximately
sampled classically, unless the PH collapses, under variants of the Aaronson-Arkhipov conjectures.

In particular, we show a general class of quantumly sampleable distributions each of which is
based on an “Efficiently Specifiable” polynomial, for which a classical approximate sampler implies
an average-case approximation. This class of polynomials contains the Permanent but also includes, for
example, the Hamiltonian Cycle polynomial, as well as many other familiar #P-hard polynomials.

Since our distribution likely requires the full power of universal quantum computation, while the
Aaronson-Arkhipov distribution uses only linear optical quantum computation with noninteracting bosons,
why is this result interesting? We can think of at least three reasons:

1. Since the conjectures required in [AA13] have not yet been proven, it seems worthwhile to weaken
them as much as possible. We do this in two ways, by weakening both conjectures to apply
to any “Efficiently Specifiable” polynomial, and by weakening the so-called Anti-Concentration
conjecture so that it need only hold for one distribution in a broad class of distributions.

2. Our construction can be understood without any knowledge of linear optics. While this may be a
disadvantage for experimentalists, in our opinion it results in a very clean and simple exposition
that may be more immediately accessible to computer scientists.

3. It is extremely common for quantum computations to employ “Quantum Fourier Sampling” in the
following way: first apply a classically efficient function to a uniform superposition of inputs, then
apply a Quantum Fourier Transform followed by a measurement. Our distributions are obtained in
exactly this way, where the classically efficient function is related to a (presumed) hard polynomial.
Establishing rigorously a robust sense in which the central primitive of Quantum Fourier Sampling
is classically hard seems a worthwhile goal in itself.
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†California Institute of Technology, supported by NSF CCF-1423544 and BSF grant 2010120.



1 Introduction

Nearly twenty years after the discovery of Shor’s factoring algorithm [Sho94] that caused an explosion of
interest in quantum computation, the complexity theoretic classification of quantum computation remains
embarrassingly unsettled.

The foundational results of Bernstein and Vazirani [BV97], Adleman, DeMarrais, and Huang [ADH97],
and Bennett, Bernstein, Brassard and Vazarani [BBBV97] laid the groundwork for quantum complexity
theory by defining BQP as the class of problems solvable with a quantum computer in polynomial time,
and established the upper bound, BQP ⊆ PP, which hasn’t been improved since.

In particular, given that BPP ⊆ BQP, so quantum computers are surely no less powerful than their classi-
cal counterparts, it is natural to compare the power of efficient quantum computation to the power of efficient
classical verification. Can every problem with an efficient quantum algorithm be verified efficiently? Like-
wise can every problem whose solution can be verified efficiently be solved quantumly? In complexity
theoretic terms, is BQP ⊆ NP, and is NP ⊆ BQP? Factoring is contained in NP ∩ coNP, and so
cannot be NP-hard unless NP = coNP and the PH collapses. Thus, while being a problem of profound
practical importance, Shor’s algorithm does not give evidence that NP ⊆ BQP.

Even progress towards oracle separations has been agonizingly slow. These same works that defined BQP
established an oracle for which NP 6⊂ BQP [BBBV97] and BQP 6⊂ NP [BV97]. This last result
can be improved to show an oracle relative to which BQP 6⊂ MA [BV97], but even finding an oracle
relative to which BQP 66⊂ AM is still wide open. This is particularly troubling given that, under widely
believed complexity assumptions, NP = MA = AM [KvM02]. Thus, our failure to provide an oracle
relative to which BQP 6⊂ AM indicates a massive lack of understanding of the classical power of quantum
computation.

Recently, two candidate oracle problems with quantum algorithms have been proven to not be contained in
the PH, assuming plausible complexity theoretic conjectures [Aar10a, FU11].1 These advances remain at
the forefront of progress on these questions.

A line of work initiated by DiVincenzo and Terhal [TD02], Bremner, Jozsa and Shepherd [BJS10], and
Aaronson and Arkhipov [AA13] asks whether we can provide a theoretical basis for quantum superiority by
looking at distribution sampling problems. In particular, Aaronson and Arkhipov show a distribution that
can be sampled efficiently by a particular limited form of quantum computation, that assuming the validity
of two feasible conjectures, cannot be approximately sampled classically (even by a randomized algorithm
with a PH oracle), unless the PH collapses. The equivalent result for decision problems, establishing
BQP 6⊂ BPP unless the PH collapses, would be a crowning achievement in quantum complexity theory.
In addition, this research has been very popular not only with the theoretical community, but also with
experimentalists who hope to perform this task, “Boson Sampling”, in their labs. Experimentally, it seems
more pressing to analyze the hardness of approximate quantum sampling, since it is unreasonable to expect
that any physical realization of a quantum computer can itself exactly sample from the quantum distribution.

Interestingly, it is also known that if we can find such a quantumly sampleable distribution for which no
classical approximate sampler exists, there exists a “search” problem that can be solved by a quantum

1Although the “Generalized Linial-Nisan” conjecture proposed in [Aar10a] is now known to be false [Aar10b].
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computer that cannot be solved classically [Aar10c]. In a search problem we are given an input x ∈ {0, 1}n,
and our goal is to output an element in a nonempty set, Ax ⊆ {0, 1}poly(n) with high probability. This
would be one of the strongest pieces of evidence to date that quantum computers can outperform their
classical counterparts.

In this work we use the same general algorithmic framework used in many quantum algorithms, which we
refer to as “Quantum Fourier Sampling”, to demonstrate the existence of a general class of distributions
that can be sampled exactly by a quantum computer. We then argue that these distributions shouldn’t be
able to be approximately sampled classically, unless the PH collapses. Perhaps surprisingly, we obtain and
generalize many of the same conclusions as Aaronson and Arkhipov [AA13] with a completely different
class of distributions.

Additionally, recently, and independent of us, an exciting result by Bremner, Montanaro and Shepherd
[BMS15] obtains similar quantum “approximate sampling” results under related but different conjectures.
While our hardness conjectures apply to a broad class of hard “polynomials”, their distribution can be
sampled by a class of commuting quantum computations known as Instantaneous Quantum Polynomial
time, or IQP, whereas our results likely require the full power of universal quantum computation.

2 Overview

2.1 Our Goals

We want to find a class of distributions that can be sampled quantumly that cannot be approximately sam-
pled classically, unless the PH collapses. A natural methodology toward showing this is to prove that the
existence of a classical approximate sampler implies that a #P-hard function can be computed in the PH.
By Toda’s Theorem [Tod91], this would imply a collapse of the PH.

In this work, we demonstrate a class of distributions that can be sampled exactly on a quantum computer. We
prove that the existence of an approximate sampler for these distributions implies an approximate average
case solution to an “Efficiently Specifiable” polynomial. An Efficiently Specifiable polynomial is informally
a polynomial in which the variables in each monomial can be computed efficiently from the index of the
monomial. This includes, among others, the Permanent and Hamiltonian Cycle polynomial.

Computing a multiplicative approximation to the Permanent with integer entries in the worst-case is #P-
hard, and computing the Permanent on average is #P-hard (see [AA13] for more details). The challenge to
proving our conjectures is to put these two together to prove that an average-case multiplicative approxima-
tion to the Permanent (or for that matter, any Efficiently Specifiable polynomial) is still a #P-hard problem.
Since we can’t prove these conjectures, and we don’t know the ingredients such a proof will require, it seems
worthwhile to attempt to generalize the class of distributions that can be sampled quantumly.
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2.2 Our Results

In Section 4 we define a general class of distributions that can be sampled exactly on a quantum computer.
The probabilities in these distributions are proportional to each different {±1}n evaluation of a particular
Efficiently Specifiable polynomial (see Definition 2) with n variables. We then show in Section 5 that the
existence of an approximate classical sampler for these distributions implies the existence of an additive
approximate average-case solution to the Efficiently Specifiable polynomial. We generalize this in Section
6 to prove that quantum computers can sample from a class of distributions in which each probability is
proportional to polynomially bounded integer evaluations of an Efficiently Specifiable polynomial.

We then attempt to extend this result to quantumly sample from a distribution with probabilities proportional
to exponentially bounded integer evaluations of Efficiently Specifiable polynomials. To do this, in Section 7,
we introduce a variant of the Quantum Fourier Transform which we call the “Squashed QFT”. We explicitly
construct this unitary operator, and show how to use it in our quantum sampling framework. We leave as an
open question whether this unitary can be realized by an efficient quantum circuit. We then prove in Section
9, using a similar argument to Section 5, that if we had a classical approximate sampler for this distribution
we’d have an additive approximate average-case solution to the Efficiently Specifiable polynomial with
respect to the binomial distribution over exponentially bounded integers.

In Section 10 we conclude with conjectures needed to establish the intractability of approximate classical
sampling from any of our quantumly sampleable distributions. As shown in Sections 5 and 6 it suffices to
prove that an additive approximate average-case solution to any Efficiently Specifiable polynomial is #P-
hard, and we conjecture that this is possible. We also propose an “Anti-concentration conjecture” relative to
an Efficiently Specifiable polynomial over the binomial distribution, which allows us to reduce the hardness
of a multiplicative approximate average-case solution to an additive approximate average-case solution.
Assuming this second conjecture, we can then base our first conjecture around the hardness of multiplicative,
rather than additive approximate average-case solutions to an Efficiently Specifiable polynomial.

Our conjectures generalize conjectures in Aaronson and Arkhipov’s results [AA13]. They conjecture that
an additive approximate average-case solution to the Permanent with respect to the Gaussian distribution
with mean 0 and variance 1 is #P-hard. They further propose an “Anti-concentration” conjecture which
allows them to reduce the hardness of multiplicative approximate average-case solutions to the Permanent
over the Gaussian distribution to the hardness of additive average case solutions to the Permanent over the
Gaussian distribution. The parameters of our conjectures match the parameters of theirs, but our conjectures
are broader, applying to any Efficiently Specifiable polynomial, a class which includes the Permanent, and
a wider class of distributions, and thus is formally easier to prove.

3 Quantum Preliminaries

In this section we cover the basic priciples of quantum computing needed to understand the content in the
paper. For a much more complete overview there are many references available, e.g., [KSV02, NC00].

The state of an n-qubit quantum system is described by a unit vector in H = (C2)⊗n, a 2n-dimensional
complex Hilbert space. As per the literature we will denote the standard orthogonal basis vectors of H by
{|v〉} for v ∈ {0, 1}n.
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In accordance with the laws of quantum mechanics, transformations of states are described by unitary trans-
formations acting on H, where a unitary transformation over H is a linear transformation specified by a
2n × 2n square complex matrix U , such that UU∗ = I , where U∗ is the conjugate transpose. Equivalently,
the rows (and columns) of U form an orthonormal basis. A local unitary is a unitary that operates only on
b = O(1) qubits; i.e. after a suitable renaming of the standard basis by reordering qubits, it is the matrix
U ⊗ I2n−b , where U is a 2b × 2b unitary U . A local unitary can be applied in a single step of a Quantum
Computer. A local decomposition of a unitary is a factorization into local unitaries. We say a 2n×2n unitary
is efficiently quantumly computable if this factorization has at most poly(n) factors.

We will need the concept of quantum evaluation of an efficiently classically computable function f :
{0, 1}n → {0, 1}m, which in one quantum query to f maps:∑

x∈{0,1}n
|x〉|z〉 →

∑
x∈{0,1}n

|x〉|z ⊕ f(x)〉

Note that this is a unitary map, as applying it again inverts the procedure, and can be done efficiently as long
as f is efficiently computable.

Assuming f is {0, 1}-valued, we can use this state together with a simple phase flip unitary gate to prepare:∑
x∈{0,1}n

(−1)f(x) |x〉|f(x)〉

And one more quantum query to f , which “uncomputes” it, and allows us to obtain the state
∑

x∈{0,1}n
(−1)f(x)|x〉.

Equivalently, if the efficiently computable function is f : {0, 1} → {±1}we can think of this as a procedure
to prepare:

∑
x∈{0,1}n

f(x)|x〉

With two quantum queries to the function f .

We close this section with an additional lemma needed for our quantum sampler.

Lemma 1. Let h : [m]→ {0, 1}n be an efficiently computable one-to-one function, and suppose its inverse
can also be efficiently computed. Then the superposition 1√

m

∑
x∈[m]

|h(x)〉 can be efficiently prepared by a

quantum algorithm.

Proof. Our quantum procedure with two quantum registers proceeds as follows:

1. Prepare 1√
m

∑
x∈[m]

|x〉|00...0〉

2. Query h using the first register as input and the second as output:

1√
m

∑
x∈[m]

|x〉|h(x)〉
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3. Query h−1 using the second register as input and the first as output:

1√
m

∑
x∈[m]

|x⊕ h−1(h(x))〉|h(x)〉 =
1√
m

∑
x∈[m]

|00...0〉|h(x)〉

4. Discard first register

4 Efficiently Specifiable Polynomial Sampling on a Quantum Computer

In this section we describe a general class of distributions that can be sampled efficiently on a Quantum
Computer.

Definition 2 (Efficiently Specifiable Polynomial). We say a multilinear homogenous n-variate polynomial
Q with coefficients in {0, 1} and m monomials is Efficiently Specifiable via an efficiently computable, one-
to-one function h : [m]→ {0, 1}n, with an efficiently computable inverse, if:

Q(X1, X2..., Xn) =
∑
z∈[m]

X1
h(z)1X2

h(z)2 ...Xn
h(z)n

Definition 3 (DQ,`). Suppose Q is an Efficiently Specifiable polynomial with m monomials. For fixed Q
and `, we define the class of distributions DQ,` over `-ary strings y ∈ [0, `− 1]n given by:

Pr
DQ,`

[y] =
|Q(Zy)|2

`nm

Where Zy ∈ Tn` is a vector of complex values encoded by the string y.

Theorem 4 (Quantum Sampling Theorem). Given an Efficiently Specifiable polynomial,Q with n variables,
m monomials, relative to a function h, and ` 6 exp(n), the resulting DQ,` can be sampled in poly(n) time
on a Quantum Computer.

Proof.

1. We start in a uniform superposition 1√
m

∑
z∈[m]

|z〉.

2. We then apply Lemma 1 to prepare 1√
m

∑
z∈[m]

|h(z)〉.

3. Apply Quantum Fourier Transform over Zn` to attain
1√
`nm

∑
y∈[0,`−1]n

∑
z∈[m]

ω
<y,h(z)>
` |y〉
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Notice that the amplitude of each y basis state in the final state after Step 3 is proportional to the value of
Q(Zy), as desired.

5 Classical Hardness of Efficiently Specifiable Polynomial Sampling

We are interested in demonstrating the existence of some distribution that can be sampled exactly by a uni-
form family of quantum circuits, that cannot be sampled approximately classically. Approximate here means
close in Total Variation distance, where we denote the Total Variation distance between two distributions X
and Y by ‖X − Y ‖. Thus we define the notion of a Sampler to be a classical algorithm that approximately
samples from a given class of distributions:

Definition 5 (Sampler). Let {Dn}n>0 be a class of distributions where each Dn is distributed over Cn.
Let r(n) ∈ poly(n), ε(n) ∈ 1/poly(n). We say S is a Sampler with respect to {Dn} if ‖S(0n, x ∼
U{0,1}r(n) , 0

1/ε(n))−Dn‖ 6 ε(n) in (classical) polynomial time.

We first recall a theorem due to Stockmeyer [Sto85] on the ability to “approximate count” in the PH.

Theorem 6 (Stockmeyer [Sto85]). Given as input a function f : {0, 1}n → {0, 1}m and y ∈ {0, 1}m, there
is a procedure that outputs α such that:

(1− ε) Pr
x∼U{0,1}n

[f(x) = y] 6 α 6 (1 + ε) Pr
x∼U{0,1}n

[f(x) = y]

In randomized time poly(n, 1/ε) with access to an NP oracle.

In this section we use Theorem 6, together with the assumed existence of a Sampler for DQ,` to obtain
hardness consequences.

In particular, we show that a Sampler would imply the existence of an efficient approximation to an Effi-
ciently Specifiable polynomial in the following two contexts:

Definition 7 (ε−additive δ-approximate solution). Given a distribution D over Cn and P : Cn → C we say
T : Cn → C is an ε−additive approximate δ−average case solution with respect to D, to P : Cn → C, if
Prx∼D[|T (x)− P (x)| 6 ε] > 1− δ.

Definition 8 (ε−multiplicative δ-approximate solution). Given a distribution D over Cn and a function
P : Cn → C we say T : Cn → C is an ε−multiplicative approximate δ−average case solution with respect
to D, if Prx∼D[|T (x)− P (x)| 6 ε|P (x)|] > 1− δ.

These definitions formalize a notion that we will need, in which an efficient algorithm computes a particular
hard function approximately only on most inputs, and can act arbitrarily on a small fraction of remaining
inputs.

In this section, we focus on the uniform distribution on {±1} strings, and a natural generalization:
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Definition 9 (T`). Given ` > 0, we define the set T` = {ω0
` , ω

1
` ..., ω

`−1
` } where ω` is a primitive `-th root

of unity.

We note that T` is just ` evenly spaced points on the unit circle, and T2 = {±1}.

Theorem 10 (Complexity consequences of Sampler). Given an Efficiently Specifiable polynomial Q with
n variables and m monomials, and a Sampler S with respect to DQ,`, there is a randomized procedure
T : Cn → C, an (ε · m)−additive approximate δ−average case solution with respect to the uniform
distribution over Tn` , to the |Q|2 function, that runs in randomized time poly(n, 1/ε, 1/δ) with access to an
NP oracle.

Proof. We need to give a procedure that outputs an εm-additive estimate to the |Q|2 function evaluated
at a uniform setting of the variables, with probability 1 − δ over choice of setting. Setting β = εδ

16 , sup-
pose S samples from a distributionD′ such that ‖DQ,`−D′‖ 6 β. We let py be PrDQ,` [y] and qy be PrD′ [y].

Our procedure picks a uniformly chosen encoding of a setting y ∈ [0, ` − 1]n, and outputs an estimate q̃y.
Note that py =

|Q(Zy)|2
`nm . Thus our goal will be to output a q̃y that approximates py within additive error

ε m
`nm = ε

`n , in time polynomial in n, 1
ε , and 1

δ .

We need:

Pr
y

[|q̃y − py| >
ε

`n
] 6 δ

First, define for each y, ∆y = |py − qy|, and so ‖DQ,` −D′‖ = 1
2

∑
y

[∆y].

Note that:

Ey[∆y] =

∑
y

[∆y]

`n
=

2β

`n

And applying Markov’s inequality, ∀k > 1,

Pr
y

[∆y >
k2β

`n
] <

1

k

Setting k = 4
δ , β = εδ

16 , we have,

Pr
y

[∆y >
ε

2
· 1

`n
] <

δ

4
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Then use approximate counting (with an NP oracle), using Theorem 6 on the randomness of S to obtain an
output q̃y so that, for all γ > 0, in time polynomial in n and 1

γ :

Pr[|q̃y − qy| > γ · qy] <
1

2n

Because we can amplify the failure probability of Stockmeyer’s algorithm to be inverse exponential. Note
that:

Ey[qy] =

∑
y
qy

`n
=

1

`n

Thus,

Pr
y

[qy >
k

`n
] <

1

k

Now, setting γ = εδ
8 and applying the union bound:

Pr
y

[|q̃y − py| >
ε

`n
] 6 Pr

y
[|q̃y − qy| >

ε

2
· 1

`n
] + Pr

y
[|qy − py| >

ε

2
· 1

`n
]

6 Pr
y

[qy >
k

`n
] + Pr[|q̃y − qy| > γ · qy] + Pr

y
[∆y >

ε

2
· 1

`n
]

6
1

k
+

1

2n
+
δ

4

6
δ

2
+

1

2n
6 δ.

Now, as will be proven in Appendix B, the variance, Var [Q(X)], of the distribution over C induced by
an Efficiently Specifiable Q with m monomials, evaluated at uniformly distributed entries over Tn` is m,
and so the preceding Theorem 10 promised us we can achieve an εVar [Q(X)]-additive approximation to
Q2, given a Sampler. We now show that, under a conjecture, this approximation can be used to obtain a
good multiplicative estimate to Q2. This conjecture effectively states that the Chebyshev inequality for this
random variable is tight.

Conjecture 1 (Anti-Concentration Conjecture relative to an n-variate polynomialQ and distributionD over
Cn). There exists a polynomial p such that for all n and δ > 0,

Pr
X∼D

[
|Q(X)|2 < Var [Q(X)]

p(n, 1/δ)

]
< δ
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Theorem 11. Assuming Conjecture 1, relative to an Efficiently Specifiable polynomial Q and a distribution
D, an εVar [Q(X)]-additive approximate δ-average case solution with respect toD, to the |Q|2 function can
be used to obtain an ε′ 6 poly(n)ε-multiplicative approximate δ′ = 2δ-average case solution with respect
to D to |Q|2.

Proof. Suppose λ is, with high probability, an εVar [Q(X)]-additive approximation to |Q(X)|2, as guaran-
teed in the statement of the Theorem. This means:

Pr
X∼D

[∣∣∣λ− |Q(X)|2
∣∣∣ > εVar [Q(X)]

]
< δ

Now assuming Conjecture 1 with polynomial p, we will show that λ is also a good multiplicative approxi-
mation to |Q(X)|2 with high probability over X .

By the union bound,

Pr
X∼D


∣∣∣λ− |Q(X)|2

∣∣∣
εp(n, 1/δ)

> |Q(X)|2
 6 Pr

X∼D

[∣∣∣λ− |Q(X)|2
∣∣∣ > εVar [Q(X)]

]
+

Pr
X∼D

[
εVar [Q(X)]

εp(n, 1/δ)
> |Q(X)|2

]
6 2δ

Where the second line comes from Conjecture 1. Thus we can achieve any desired multiplicative error
bounds (ε′, δ′) by setting δ = δ′/2 and ε = ε′/p(n, 1/δ).

For the results in this section to be meaningful, we simply need the Anti-Concentration conjecture to hold
for some Efficiently Specifiable polynomial that is #P-hard to compute, relative to any distribution we can
sample from (either Un, or B(0, k)n). We note that Aaronson and Arkhipov [AA13] conjectures the same
statement as Conjecture 1 for the special case of the Permanent function relative to matrices with entries
distributed independently from the complex Gaussian distribution of mean 0 and variance 1.

Additionally, we acknowledge a result of Tao and Vu who show:

Theorem 12 (Tao & Vu [TV08]). For all ε > 0 and sufficiently large n,

Pr
X∈{±1}n×n

[
|Permanent[X]| <

√
n!

nεn

]
<

1

n0.1

Which comes quite close to our conjecture for the case of the Permanent function and uniformly dis-
tributed {±1}n×n = Tn×n2 matrix. More specifically, for the above purpose of relating the additive hardness
to the multiplicative, we would need an upper bound of any inverse polynomial δ, instead of a fixed n−0.1.
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6 Sampling from Distributions with Probabilities Proportional to [−k, k]
Evaluations of Efficiently Specifiable Polynomials

In the prior sections we discussed quantum sampling from distributions in which the probabilities are propor-
tional to evaluations of Efficiently Specifiable polynomials evaluated at points in Tn` . In this section we show
how to generalize this to quantum sampling from distributions in which the probabilities are proportional
to evaluations of Efficiently Specifiable polynomials evaluated at polynomially bounded integer values. In
particular, we show a simple way to take an Efficiently Specifiable polynomial with n variables and create
another Efficiently Specifiable polynomial with kn variables, in which evaluating this new polynomial at
{−1,+1}kn is equivalent to evaluation of the old polynomial at [−k, k]n.

Definition 13 (k-valued equivalent polynomial). For every Efficiently Specifiable polynomial Q with m
monomials and every fixed k > 0 consider the polynomial Q′k : Tkn2 → R defined by replacing each
variable xi in Q with the sum of k new variables x(1)i + x

(2)
i + ... + x

(k)
i . We will call Q′k the k-valued

equivalent polynomial with respect to Q.

Note that a uniformly chosen {±1} assignment to the variables inQ′k induces an assignment to the variables
in Q, distributed from a distribution we call B(0, k):

Definition 14 (B(0, k)). For k a positive integer, we define the distribution B(0, k) supported over the odd
integers in the range [−k, k] (if k is odd), or even integers in the range [−k, k] (if k is even), so that:

Pr
B(0,k)

[y] =

 ( k
k+y
2

)

2k
if y and k are both odd or both even

0 otherwise

Theorem 15. Given an Efficiently Specifiable polynomial Q with n variables and m monomials, let Q′k be
its k-valued equivalent polynomial. For all ` < exp(n), we can quantumly sample from the distribution
DQ′k,` in time poly(n, k).

Proof. Our proof follows from the following lemma, which proves that Q′k is Efficiently Specifiable.

Lemma 16. Suppose Q is an n-variate, homogeneous degree d Efficiently Specifiable polynomial with m
monomials relative to a function h : [m]→ {0, 1}n. Let k 6 poly(n) and let Q′k be the k-valued equivalent
polynomial with respect to Q. Then Q′k is Efficiently Specifiable with respect to an efficiently computable
function h′ : [m]× [k]d → {0, 1}kn.

Proof. We first define and prove that h′ is efficiently computable. We note that if there are m monomials in
Q, there are mkd monomials in Q′. As before, we’ll think of the new variables in Q′k as indexed by a pair
of indices, a “top index” in [k] and a “bottom index” in [n]. Equivalently we are labeling each variable in
Q′k as x(j)i , the j-th copy of the i-th variable in Q. We are given x ∈ [m] and y1, y2, ..., yd ∈ [k]. Then, for
all i ∈ [n] and j ∈ [k], we define the output, z = h′(x, y1, y2, ..., yd)i,j = 1 iff:

1. h(x)i = 1

2. If h(x)i is the ` 6 d-th non-zero element of h(x), then we require y` = j
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We will now show that h′−1 is efficiently computable. As before we will think of z ∈ {0, 1}kn as being
indexed by a pair of indices, a ‘top index” in [k] and a “bottom index” in [n]. Then we compute h′−1(z) by
first obtaining from z the bottom indices j1, j2, ..., jd and the corresponding top indices, i1, i2, ..., id. Then
obtain from the bottom indices the string x ∈ {0, 1}n corresponding to the indices of variables used in Q
and output the concatenation of h−1(x) and j1, j2, ..., jd.

Theorem 15 now follows from Lemma 16, where we established that Q′k is Efficiently Specifiable, and
Theorem 4, where we established that we can sample from DQ′k,` quantumly.

Theorem 17. Let Var [Q(X)] = Var [Q(X1, X2, ..., Xn)] denote the variance of the distribution over R
induced by Q with assignments distributed from B(0, k)n. Given a Sampler S with respect toDQ′k,2, we can
find a randomized procedure T : Rn → R, an εVar [Q(X)]-additive approximate δ-average case solution
to Q2 with respect to B(0, k)n that runs in time poly(n, 1/ε, 1/δ) with access to an NP oracle.

Proof. We begin by noting that Q′k is a polynomial of degree d that has kn variables and m′ = mkd mono-
mials. By Theorem 10 we get that a Sampler with respect to DQ′k,2 implies there exists A, an εm′-additive

approximate δ-average case solution toQ′k
2 with respect to U{±1}kn that runs in time poly(n, 1/ε, 1/δ) with

access to an NP oracle. We need to show the existence of an A′, an εm′-additive approximate δ-average
case solution to Q′k

2 with respect to the B(0, k)n distribution.

We think of A′ as receiving an input, z ∈ [−k, k]n drawn from B(0, k)n. A′ picks y uniformly from the
orbit of z over {±1}kn and outputs A(y). Now:

Pr
z∼B(0,k)n

[∣∣A′(z)−Q2(z)
∣∣ 6 εm′

]
= Pr

z∼B(0,k)n,y∼Rorbit(z)

[∣∣A(y)−Q2(z)
∣∣ 6 εm′

]
(1)

= Pr
y∼U{±1}kn

[∣∣A(y)−Q′k(y)
∣∣ 6 εm′

]
> 1− δ (2)

(3)

Thus, because a uniformly chosen {±1}kn assignment to the variables in Q′k induces a B(0, k)n distributed
assignment to the variables in Q, this amounts to an εm′-additive approximate δ-average case solution to
Q2 with respect to B(0, k)n. In Appendix B we prove that Var [Q(X)] is m′ as desired.

7 The “Squashed” QFT

In this section we begin to prove that Quantum Computers can sample efficiently from distributions with
probabilities proportional to evaluations of Efficiently Specifiable polynomials at points in [−k, k]n for
k = exp(n). Note that in the prior quantum algorithm of Section 4 we would need to invoke the QFT over
Zkn2 , of dimension doubly-exponential in n. Thus we need to define a new Polynomial Transform that can
be obtained from the standard Quantum Fourier Transform over Zn2 , which we refer to as the “Squashed
QFT”. Now we describe the unitary matrix which implements the Squashed QFT.
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Consider the 2k×2k matrixDk, whose columns are indexed by all possible 2k multilinear monomials of the
variables x1, x2, ..., xk and the rows are indexed by the 2k different {−1,+1} assignments to the variables.
The (i, j)-th entry is then defined to be the evaluation of the j-th monomial on the i-th assignment. We
note in passing that, defining D̄k to be the matrix whose entries are the entries in Dk normalized by 1/

√
2k

gives us the Quantum Fourier Transform matrix over Zk2 . It is clear, by the unitarity of the Quantum Fourier
Transform, that the columns (and rows) in Dk are pairwise orthogonal.

Now we define the “Elementary Symmetric Polynomials”:

Definition 18 (Elementary Symmetric Polynomials). We define the j-th Elementary Symmetric Polynomial
on k variables for j ∈ [0, k] to be:

pj(X1, X2, ..., Xk) =
∑

16`1<`2<...<`j6k

X`1X`2 ...X`j

In this work we will care particularly about the first two elementary symmetric polynomials, p0 and p1 which
are defined as p0(X1, X2, ..., Xk) = 1 and p1(X1, X2, ..., Xk) =

∑
16`6k

X`.

Consider the (k + 1) × (k + 1) matrix, D̃k, whose columns are indexed by elementary symmetric poly-
nomials on k variables and whose rows are indexed by equivalence classes of assignments in Zk2 under Sk
symmetry. We obtain D̃k from Dk using two steps.

First obtain a 2k × (k+ 1) rectangular matrix D̃(1)
k whose rows are indexed by assignments to the variables

x1, x2, ..., xk ∈ {±1}k and columns are the entry-wise sum of the entries in each column of Dk whose
monomial is in each respective elementary symmetric polynomial.

Then obtain the final (k+1)× (k+1) matrix D̃k by taking D̃(1)
k and keeping only one representative row in

each equivalence class of assignments under Sk symmetry. We label the equivalence classes of assignments
under Sk symmetry o0, o1, o2, ..., ok and note that for each i ∈ [k], |oi| =

(
k
i

)
. Observe that D̃k is precisely

the matrix whose (i, j)-th entry is the evaluation of the j-th symmetric polynomial evaluated on an assign-
ment in the i-th symmetry class.

Theorem 19. The columns in the matrix D̃(1)
k are pairwise orthogonal.

Proof. Note that each column in the matrix D̃(1)
k is the sum of columns in Dk each of which are orthogonal.

We can prove this theorem by observing that if we take any two columns in D(1)
k , called c1, c2, where c1 is

the sum of columns {ui} of Dk and c2 is the sum of columns {vi} of Dk. The inner product, 〈c1, c2〉 can be
written:

〈
∑
i

ui,
∑
j

vj〉 =
∑
i,j

〈ui, vj〉 = 0

12



Theorem 20. Let L be the (k+1)× (k+1) diagonal matrix with i-th entry equal to
√
oi. Then the columns

of L · D̃k are orthogonal.

Proof. Note that the value of the symmetric polynomial at each assignment in an equivalence class is the
same. We have already concluded the orthogonality of columns in D̃(1)

k . Therefore if we let a and b be any
two columns in the matrix D̃k, and their respective columns be ā, b̄ in D̃(1)

k , we can see:

k∑
i=0

(aibi|oi|) =
2k∑
i=0

āib̄i = 0

From this we conclude that the columns of the matrix L · D̃k, in which the i-th row of D̃k is multiplied by√
oi, are orthogonal.

Theorem 21. We have just established that the columns in the matrix L · D̃k are orthogonal. Let the
k + 1 × k + 1 diagonal matrix R be such that so that the columns in L · D̃k · R are orthonormal, and
thus L · D̃k · R is unitary. Then the first two nonzero entries in R, which we call r0, r1, corresponding to
the normalization of the column pertaining to the zero-th and first elementary symmetric polynomial, are
1/
√

2k and 1√
k∑
i=0

[(ki)(k−2i)
2]

.

Proof. First we calculate r0. Since we wish for a unitary matrix, we want the `2 norm of the first column of
D̃k to be 1, and so need:

r20

k∑
i=0

(
√
oi)

2 = r20

k∑
i=0

(
k

i

)
= 1

And so r0 is 1/
√

2k as desired.

Now we calculate r1, the normalization in the column of D̃k corresponding to the first elementary symmetric
polynomial. Note that in i-th equivalence class of assignments we have exactly i negative ones and k − i
positive ones. Thus the value of the first symmetric polynomial is the sum of these values, which for the

i− th equivalence class is precisely k − 2i. Then we note the normalization in each row is
√(

k
i

)
. Thus we

have

r21

k∑
i=0

[√(
k

i

)
(k − 2i)

]2
= 1

Thus r1 = 1√
k∑
i=0

[(ki)(k−2i)
2]

as desired.
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8 Using our “Squashed QFT” to Quantumly Sample from Distributions of
Efficiently Specifiable Polynomial Evaluations

In this section we use the unitary matrix developed earlier to quantumly sample distributions with probabil-
ities proportional to evaluations of Efficiently Specifiable polynomials at points in [−k, k]n for k = exp(n).
Here we assume that we have an efficient quantum circuit decomposition for this unitary. The prospects for
this efficient decomposition are discussed in Section 10.

For convenience, we’ll define a map ψ : [−k, k]→ [0, k], for k even, with

ψ(y) =

{
k+y
2 if y is even

0 otherwise

Definition 22. Suppose Q is an Efficiently Specifiable polynomial Q with n variables and m monomials,
and, for k 6 exp(n), let Q′k be its k-valued equivalent polynomial. Let Var [Q(X)] be the variance of the
distribution over R induced by Q with assignments to the variables distributed over B(0, k)n (or equiva-
lently, we can talk about Var [Q′k] where each variable inQ′k is independently uniformly chosen from {±1}),
as calculated in Appendix B. Then we define the of distribution DQ,k over n tuples of integers in [−k, k] by:

Pr
DQ,k

[y] =
Q(y)2

(
k

ψ(y1)

)(
k

ψ(y2)

)
...
(

k
ψ(yn)

)
2knVar [Q(X)]

Theorem 23. By applying (L · D̃k ·R)⊗n in place of the Quantum Fourier Transform over Zn2 in Section 4
we can efficiently quantumly sample from DQ,k.

Proof. Since we are assuming Q is Efficiently Specifiable, let h : [m] → {0, 1}n be the invertible function
describing the variables in each monomial. We start by producing the state over k + 1 dimensional qudits:

1√
m

∑
z∈[m]

|h(z)〉

Which we prepare via the procedure described in Lemma 1.

Instead of thinking of h as mapping an index of a monomial from [m] to the variables in that monomial, we
now think of h as taking an index of a monomial in Q to a polynomial expressed in the {1, x(1) + x(2) +
...+ x(k)}n basis.

Now take this state and apply the unitary (which we assume can be realized by an efficient quantum circuit)
(L · D̃k ·R)⊗n.

Notice each y ∈ [−k, k]n has an associated amplitude:

αy =
rn−d0 rd1Q(y)

√(
k

ψ(y1)

)(
k

ψ(y2)

)
...
(

k
ψ(yn)

)
√
m

14



Letting py = PrDQ,k [y], note that, by plugging in r0, r1 from Section 7:

α2
y =

Q(y)2
(

k
ψ(y1)

)(
k

ψ(y2)

)
...
(

k
ψ(yn)

)
r
2(n−d)
0 r2d1

m

=
Q(y)2

(
k

ψ(y1)

)(
k

ψ(y2)

)
...
(

k
ψ(yn)

)
m2k(n−d)

(
k∑
i=0

[(
k
i

)
(k − 2i)2

])d
=
Q(y)2

(
k

ψ(y1)

)(
k

ψ(y2)

)
...
(

k
ψ(yn)

)
2kn−kdVar [Q(X)]2kd

=
Q(y)2

(
k

ψ(y1)

)(
k

ψ(y2)

)
...
(

k
ψ(yn)

)
2knVar [Q(X)]

= py

9 The Hardness of Classical Sampling from the Squashed Distribution

In this section, as before, we use Stockmeyer’s Theorem (Theorem 6), together with the assumed existence
of a Sampler for DQ,k to obtain hardness consequences for classical sampling with k 6 exp(n).

Theorem 24. Given an Efficiently Specifiable polynomialQwith n variables andmmonomials, letQ′k be its
k-valued equivalent polynomial, for some fixed k 6 exp(n). Suppose we have a Sampler S with respect to
our quantumly sampled distribution class, DQ,k, and let Var [Q(X)] denote the variance of the distribution
over R induced by Q with assignments distributed from B(0, k)n. Then we can find a randomized procedure
T : Rn → R, an εVar [Q(X)]-additive approximate δ-average case solution to Q2 with respect to B(0, k)n

that runs in time poly(n, 1/ε, 1/δ) with access to an NP oracle.

Proof. Setting β = εδ/16, suppose S samples from a class of distributions D′ so that ‖DQ,k − D′‖ 6 β.
Let qy = PrD′ [y].

We define φ : {±1}kn → [−k, k]n to be the map from each {±1}kn assignment to its equivalence class of
assignments, which is n blocks of even integral values in the interval [−k, k]. Note that, given a uniformly
random {±1}kn assignment, φ induces the B(0, k) distribution over [−k, k]n.

Our procedure picks a y ∈ [−k, k]n distributed2 via B(0, k)n, and outputs an estimate q̃y. Equivalently, we
analyze this procedure by considering a uniformly distributed x ∈ {±1}kn and then returning an approxi-
mate count, q̃φ(x) to qφ(x). We prove that our procedure runs in time poly(n, 1/ε, 1/δ) with the guarantee
that:

Pr
x

[
|q̃φ(x) − pφ(x)|(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) > ε

2kn

]
6 δ

2We can do this when k = exp(n) by approximately sampling from the Normal distribution, with only poly(n) bits of random-
ness, and using this to approximate B(0, k) to within additive error 1/poly(n) e.g., [BM58, Ber41].
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And by our above analysis of the quantum sampler:

pφ(x) =
Q(φ(x))2

(
k

ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

)
2knVar [Q(X)]

Note that: 1
2

∑
y∈[−k,+k]n

|py − qy| 6 β, which, in terms of x, because we are summing over all strings in the

orbit under (Sk)
n symmetry, can be written:

1

2

∑
x∈{±1}kn

∣∣pφ(x) − qφ(x)∣∣(
k

ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) 6 β

First we define for each x, ∆x =
|pφ(x)−qφ(x)|

( k
ψ(φ(x)1)

)( k
ψ(φ(x)2)

)...( k
ψ(φ(x)n))

and so ‖DQ,k −D′‖ = 1
2

∑
x

∆x.

Note that:

E x[∆x] =

∑
x

∆x

2kn
=

2β

2kn

And applying Markov, ∀j > 1,

Pr
x

[∆x >
j2β

2kn
] <

1

j

Setting j = 4
δ , β = εδ

16 , we have,

Pr
x

[∆x >
ε

2
· 1

2kn
] <

δ

4

Then use approximate counting (with an NP oracle), using Theorem 6 on the randomness of S to obtain an
output q̃y so that, for all γ > 0, in time polynomial in n and 1

γ :

Pr[|q̃y − qy| > γ · qy] <
1

2n

Because we can amplify the failure probability of Stockmeyer’s algorithm to be inverse exponential.
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Equivalently in terms of x:

Pr
x

[
|q̃φ(x) − qφ(x)|(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) > γ ·
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

)] < 1

2n

And we have:

E x

[
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

)] 6

∑
x

qφ(x)

( k
ψ(φ(x)1)

)( k
ψ(φ(x)2)

)...( k
ψ(φ(x)n))

2kn
=

1

2kn

Thus, by Markov,

Pr
x

[
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) > j

2kn
] <

1

j

Now, setting γ = εδ
8 and applying the union bound:

Pr
x

[ ∣∣q̃φ(x) − pφ(x)∣∣(
k

ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) > ε

2kn

]

6 Pr
x

[ ∣∣q̃φ(x) − qφ(x)∣∣(
k

ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) > ε

2
· 1

2kn

]
+ Pr

x

[ ∣∣qφ(x) − pφ(x)∣∣(
k

ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) > ε

2
· 1

2kn

]

6 Pr
x

[
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) > j

2kn

]

+ Pr

[
|q̃φ(x) − qφ(x)|(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) > γ ·
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

)]+ Pr
x

[
∆x >

ε

2
· 1

2kn

]
6

1

j
+

1

2n
+
δ

4

6
δ

2
+

1

2n
6 δ.

10 Putting it All Together

In this section we put our results in perspective and conclude.
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As mentioned before, our goal is to find a class of distributions {Dn}n>0 that can be sampled exactly in
poly(n) time on a Quantum Computer, with the property that there does not exist a (classical) Sampler
relative to that class of distributions, {Dn}n>0.

Using the results in Sections 5 and 6 we can quantumly sample from a class of distributions {DQ,k}n>0,
where k ∈ poly(n) with the property that, if there exists a classical Sampler relative to this class of dis-
tributions, there exists an εVar [Q(X)]-additive δ-average case solution to the Q2 function with respect to
the B(0, k)n distribution. If we had an efficient decomposition for the “Squashed QFT” unitary matrix, we
could use the results from Sections 8 and 9 to make k as large as exp(n). We would like this to be an
infeasible proposition, and so we conjecture:

Conjecture 2. There exists some Efficiently Specifiable polynomialQwith n variables, so that εVar [Q(X)]-
additive δ-average case solutions with respect to B(0, k)n, for any fixed k < exp(n), to Q2, cannot be
computed in (classical) randomized poly(n, 1/ε, 1/δ) time with a PH oracle.

At the moment we don’t know of such a decomposition for the “Squashed QFT”. However, we do know
that we can classically evaluate a related fast (time n log2 n) polynomial transform by a theorem of Driscoll,
Healy, and Rockmore [DJR97]. We wonder if there is some way to use intuition gained by the existence of
this fast polynomial transform to show the existence of an efficient decomposition for our “Squashed QFT”.

Additionally, if we can prove the Anti-Concentration Conjecture (Conjecture 1) relative to some Efficiently
Specifiable polynomial Q and the B(0, k)n distribution, we appeal to Theorem 11 to show that it suffices to
prove:

Conjecture 3. There exists some Efficiently Specifiable polynomial Q with n variables, so that Q satisfies
Conjecture 1 relative to B(0, k)n, for k 6 exp(n), and ε-multiplicative δ-average case solutions, with
respect to B(0, k)n, to Q2 cannot be computed in (classical) randomized poly(n, 1/ε, 1/δ) time with a PH
oracle.

We would be happy to prove that either of these two solutions (additive or multiplicative) are #P-hard. In
this case we can simply invoke Toda’s Theorem [Tod91] to show that such a randomized classical solution
would collapse PH to some finite level.

We note that at present, both of these conjectures seem out of reach, because we do not have an example of
a polynomial that is #P-hard to approximate (in either multiplicative or additive) on average, in the sense
that we need. Hopefully this is a consequence of a failure of proof techniques, and can be addressed in the
future with new ideas.
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A The Power of Exact Quantum Sampling

For the sake of completeness, in this section we prove a folklore result (that is implicit in e.g., [Aar11])
showing that, unless the PH collapses to a finite level, there is a class of distributions that can be sampled
efficiently on a Quantum Computer, that cannot be sampled exactly classically.

Note that as a consequence of Theorem 6, given an efficiently computable f : {0, 1}n → {0, 1} we can

compute a multiplicative approximation to Prx∼U{0,1}n [f(x) = 1] =

∑
x∈{0,1}n

f(x)

2n in the PH.

Now we show the promised class of quantumly sampleable distributions:

Definition 25 (Df ). Given f : {0, 1}n → {±1}, we define the distribution Df over {0, 1}n as follows:

Pr
Df,n

[y] =

( ∑
x∈{0,1}n

(−1)〈x,y〉f(x)

)2

22n

The fact that this is a distribution will follow from the proceeding discussion.

Theorem 26. For all efficiently computable f : {0, 1}n → {±1} we can sample from Df in poly(n) time
on a Quantum Computer.

Proof. Consider the following quantum algorithm:

1. Prepare the uniform superposition over n qubits, 1
2n/2

∑
x∈{0,1}n

|x〉

2. Since by assumption f is efficiently computable, we can apply f to the phases (as discussed in Section
3), with two quantum queries to f resulting in:

|f〉 =
1

2n/2

∑
x∈{0,1}n

f(x)|x〉
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3. Apply the n qubit Hadamard, H⊗n

4. Measure in the standard basis

Note that H⊗n|f〉 = 1
2n

∑
y∈{0,1}n

∑
x∈{0,1}n

(−1)〈x,y〉f(x)|y〉 and therefore the distribution sampled by the

above quantum algorithm is Df .

As before, the key observation is that (〈00...0|H⊗n|f〉)2 =

( ∑
x∈{0,1}n

f(x)

)2

22n
, and therefore encodes a #P-

hard quantity in an exponentially small amplitude. We can exploit this hardness classically if we assume
the existence of a classical sampler, which we define to mean an efficient random algorithm whose output is
distributed via this distribution.

Theorem 27 (Folklore, e.g., [Aar11]). Suppose we have a classical randomized algorithm B, which given
as input 0n, samples from Df in time poly(n), then the PH collapses to BPPNP.

Proof. The proof follows by applying Theorem 6 to obtain an approximate count to the fraction of random
strings r so that B(0n, r) = 00..0. Formally, we can output an α so that:

(1− ε)

( ∑
x∈{0,1}n

f(x)

)2

22n
6 α 6

( ∑
x∈{0,1}n

f(x)

)2

22n
(1 + ε)

In time poly(n, 1/ε) using an NP oracle. Multiplying through by 22n allows us to get a multiplicative

approximation to

( ∑
x∈{0,1}n

f(x)

)2

in the PH. It is clear that, given efficiently computable f : {0, 1}n →

{±1} computing
∑

x∈{0,1}n
f(x) is #P-hard. Aaronson [Aar11] has shown that even calculating this relative

error estimate to

( ∑
x∈{0,1}n

f(x)

)2

is #P-hard. Since we know by Toda’s Theorem [Tod91], PH ⊆ P#P,

we now have that P#P ⊆ BPPNP ⇒ PH ⊆ BPPNP leading to our theorem. Note also that this theorem
would hold even under the weaker assumption that the sampler is contained in BPPPH.

We end this Section by noting that Theorem 27 is extremely sensitive to the exactness condition imposed
on the classical sampler, because the amplitude of the quantum state on which we based our hardness is
only exponentially small. Thus it is clear that by weakening our sampler to an “approximate” setting in
which the sampler is free to sample any distribution Y so that the Total Variation distance ‖Y − Df‖ 6
1/poly(n) we no longer can guarantee any complexity consequence using the above construction. Indeed,
this observation makes the construction quite weak– for instance, it may even be unfair to demand that any
physical realization of this quantum circuit itself samples exactly from this distribution! In the preceding
sections we are motivated by this apparent weakness and discuss the intractability of approximately sampling
in this manner from quantumly sampleable distributions.
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B Computation of the Variance of Efficiently Specifiable Polynomial

In this section we compute the variance of the distribution over R induced by an Efficiently Specifiable
polynomial Q with assignments to the variables chosen independently from the B(0, k) distribution. We
will denote this throughout the section by Var [Q(X)]. Recall, by the definition of Efficiently Specifiable,
we have that Q is an n variate homogenous multilinear polynomial with {0, 1} coefficients. Assume Q is
of degree d and has m monomials. Let each [−k, k] valued variable Xi be independently distributed from
B(0, k).

We adopt the notation whereby, for j ∈ [m], l ∈ [d], xjl is the l-th variable in the j-th monomial of Q.

Using the notation we can expressQ(X1, ..., Xn) =
m∑
j=1

d∏
l=1

Xjl . By independence of these random variables

and since they are mean 0, it suffices to compute the variance of each monomial and multiply by m:

Var [Q(X)] = Var [Q(X1, ..., Xn)] = E

 m∑
j=1

d∏
l=1

X2
jl

 =
m∑
j=1

E

[
d∏
l=1

X2
jl

]
(4)

= mE

[
d∏
l=1

X2
1l

]
= m

d∏
l=1

E
[
X2

1l

]
(5)

= m
(
E
[
X2

11

])d (6)

Now since these random variables are independent and identically distributed, we can calculate the variance
of an arbitrary Xjl for any j ∈ [m] and l ∈ [d]:

E [X2
jl

] =
1

2k

k∑
i=0

[
(k − 2i)2

(
k

i

)]
(7)

(8)

Thus, the variance of Q is:

m
1

2kd

(
k∑
i=0

[
(k − 2i)2

(
k

i

)])d

It will be useful to calculate this variance in a different way, and obtain a simple closed form. In this way we
will consider the k-valued equivalent polynomial Q′k : Tnk2 → R which is a sum of m′ = mkd multilinear

monomials, each of degree d. As before we can writeQ′k(X1, ..., Xnk) =
m′∑
j=1

d∏
l=1

Xjl . Note that the uniform

distribution over assignments in Tkn2 to Q′k induces B(0, k)n over [−k, k]n assignments to Q. By the same
argument as above, using symmetry and independence of random variables, we have:

22



Var [Q(X)] = Var [Q(X1, X2, ..., Xn)] =Var [Q′k(X1, X2, ..., Xnk)] (9)

= m′
d∏
l=1

E
[
X2

1l

]
(10)

= m′E
[
X2

11

]d
= 1dm′ = m′ = kdm (11)

C Examples of Efficiently Specifiable Polynomials

In this section we give two examples of Efficiently Specifiable polynomials.

Theorem 28. Permanent (x1, ..., xn2) =
∑
σ∈Sn

n∏
i=1

xi,σ(i) is Efficiently Specifiable.

Proof. We note that it will be convenient in this section to index starting from 0. The theorem follows from
the existence of an hPermanent : [0, n! − 1] → {0, 1}n2

that efficiently maps the i-th permutation over n
elements to a string representing its obvious encoding as an n × n permutation matrix. We will prove that
such an efficiently computable hPermanent exists and prove that its inverse, h−1Permanent is also efficiently
computable.

The existence of hPermanent follows from the so-called “factorial number system” [Knu73], which gives
an efficient bijection that associates each number in [0, n!− 1] with a permutation in Sn. It is customary to
think of the permutation encoded by the factorial number system as a permuted sequence of n numbers, so
that each permutation is encoded in n log n bits. However, it is clear that we can efficiently transform this
notation into the n× n permutation matrix.

To go from an integer j ∈ [0, n!− 1] to its permutation we:

1. Take j to its “factorial representation”, an n number sequence, where the i-th place value is associated
with (i − 1)!, and the sum of the digits multiplied by the respective place value is the value of the
number itself. We achieve this representation by starting from (n − 1)!, setting the leftmost value
of the representation to j′ = b j

(n−1)!c, letting the next value be b j−j
′·(n−1)!

(n−2)! c and continuing until 0.
Clearly this process can be efficiently achieved and efficiently inverted, and observe that the largest
each value in the i-th place value can be is i.

2. In each step we maintain a list ` which we think of as originally containing n numbers in ascending
order from 0 to n− 1.

3. Repeat this step n times, once for each number in the factorial representation. Going from left to
right, start with the left-most number in the representation and output the value in that position in the
list, `. Remove that position from `.

4. The resulting n number sequence is the encoding of the permutation, in the standard n log n bit en-
coding
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Now we show that the Hamiltonian Cycle Polynomial is Efficiently Specifiable.

Given a graph G on n vertices, we say a Hamiltonian Cycle is a path in G that starts at a given vertex, visits
each vertex in the graph exactly once and returns to the start vertex.

We define an n-cycle to be a Hamiltonian cycle in the complete graph on n vertices. Note that there are
exactly (n− 1)! n-cycles in Sn.

Theorem 29. HamiltonianCycle (x1, ..., xn2) =
∑

σ: n−cycle

n∏
i=1

xi,σ(i) is Efficiently Specifiable.

Proof. We can modify the algorithm for the Permanent above to give us an efficiently computable hHC :
[0, (n− 1)!− 1]→ {0, 1}n2

with an efficiently computable h−1HC .

To go from a number j ∈ [0, (n− 1)!− 1] to its n-cycle we:

1. Take j to its factorial representation as above. Now this is an n − 1 number sequence where the i-th
place value is associated with (i − 1)!, and the sum of the digits multiplied by the respective place
value is the value of the number itself.

2. In each step we maintain a list ` which we think of as originally containing n numbers in ascending
order from 0 to n− 1.

3. Repeat this step n − 1 times, once for each number in the factorial representation. First remove the
smallest element of the list. Then going from left to right, start with the left-most number in the
representation and output the value in that position in the list, `. Remove that position from `.

4. We output 0 as the n-th value of our n-cycle.

To take an n-cycle to a factorial representation, we can easily invert the process:

1. In each step we maintain a list ` which we think of as originally containing n numbers in order from
0 to n− 1.

2. Repeat this step n − 1 times. Remove the smallest element of the list. Going from left to right, start
with the left-most number in the n-cycle and output the position of that number in the list ` (where
we index the list starting with the 0 position). Remove the number at this position from `.

D A Simple Example of “Squashed” QFT, for k = 2

In this Section we explicitly construct the matrix L · D̃2 ·R from the QFT over Z2
2. Note that the matrix we

referred to as D2 is:
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
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Where we can think of the columns as identified with the monomials {1, x1, x2, x1x2} in this order (from left
to right) and the rows (from top to bottom) as identified with the assignments {(1, 1), (−1, 1), (1,−1), (−1,−1)}
where the first element in each pair is the assignment to x1 and the second is to x2. Note that as desired, the
(i, j)-th element of D2 is the evaluation of the j-th monomial on the i-th assignment.

Now we create D̃(1)
2 by combining columns of monomials that belong to each elementary symmetric poly-

nomial, as described in the prior section. We identify the columns with elementary symmetric polynomials
on variables x1, x2 in order from left to right: 1, x1 +x2, x1x2 and the rows remain the same. This gives us:


1 2 1
1 0 −1
1 0 −1
1 −2 1


It can easily be verified that the columns are still orthogonal. Now we note that the rows corresponding to
assignments (1,−1) and (−1, 1) are in the same orbit with respect to S2 symmetry. And thus we obtain D̃2: 1 2 1

1 0 −1
1 −2 1


Now L is the diagonal matrix whose i-th entry is

√
oi, the size of the i-th equivalence class of assignments

under S2 symmetry. Note that |o0| =
√(

2
0

)
= 1, |o1| =

√(
2
1

)
=
√

2, and |o2| =
√(

2
2

)
= 1, and so L is: 1 0 0

0
√

2 0
0 0 1


And L · D̃2 =  1 2 1√

2 0 −
√

2
1 −2 1


And we note that the columns are now orthogonal. As before, this implies there exists a diagonal matrix R
so that L · D̃2 ·R is unitary. It is easily verified that this is the matrix R:

 1
2 0 0
0 1√

8
0

0 0 1
2


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And the first two elements r0, r1 can be easily seen to be 1√
2k

= 1
2 and 1√

k∑
i=0

[(ki)(k−2i)
2]

= 1√
8
, as claimed

in the prior section. Thus the final k + 1× k + 1 matrix L · D̃2 ·R is:


1
2

2√
8

1
2√

2
2 0 −

√
2
2

1
2 − 2√

8
1
2


Which is unitary, as desired.
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