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We study the complexity of classically sampling from the output distribution of an Ising spin model, which
can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we con-
struct a speci�c example of an Ising Hamiltonian that—a�er time evolution starting from a trivial initial state—
produces a particular output con�guration with probability very nearly proportional to the square of the per-
manent of a matrix with arbitrary integer entries. In a similar spirit to BosonSampling, the ability to sample
classically from the probability distribution induced by time evolution under this Hamiltonian would imply
unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be
e�ciently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size
instances (i.e. qubit numbers) large enough so that classical sampling of the output distribution is classically
di�cult in practice may be achievable in the near future. Unlike BosonSampling, our current results only imply
hardness of exact classical sampling, leaving open the important question of whether a much stronger approx-
imate-sampling hardness result holds in this context. As referenced in a recent paper of Bouland, Mancinska,
and Zhang [1], our result completes the sampling hardness classi�cation of two-qubit commuting Hamiltoni-
ans.

I. INTRODUCTION

It is o�en taken for granted that quantum computers can
e�ciently perform certain computational tasks that classi-
cal computers cannot. But �nding a quantum task that, on
the one hand, admits compelling complexity-theoretic argu-
ments against e�cient classical simulation, and on the other
hand admits experimental demonstration with technology
that is feasible in the near future, remains an important and
challenging task in the �eld of quantum information science.
An extremely exciting line of work, starting with results of
Terhal and DiVincenzo and Bremner, Jozsa, and Shepherd,
has shown that quantum computers are capable of sampling
from distributions that cannot be sampled exactly by ran-
domized classical algorithms [2, 3]. �e BosonSampling pro-
tocol [4], proposed by Aaronson and Arkhipov, gives a hard-
ness of sampling result that may be within reach for near-
term quantum experiments. �e basic idea is to send photons
through a network of linear optical devices, arranged in such
a way that the probabilities of typical output con�gurations
of the photons are proportional to the squares of permanents
of matrices with independent and Gaussian-distributed ran-
dom entries. Given reasonable assumptions about the hard-
ness of computing permanents of such matrices, the ability to
e�ciently classically sample from any distribution even close
(in total variation distance) to this distribution would imply
extremely unlikely complexity theoretic consequences.

A number of proof-of-principle experiments implementing
BosonSampling have already been carried out [5–8]. How-
ever, a remaining bo�leneck to producing an experimentally
convincing demonstration of BosonSampling is the techni-
cal di�culty of building linear-optical systems that are large
enough and clean enough to realize BosonSampling instances
for which classical sampling is actually di�cult. By compar-
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FIG. 1. Schematic of the model: (a) Spins in subla�ice A (red) are
coupled to spins in subla�ice B (blue) via Ising couplings σ̂xi τ̂
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all of them start o� in |↓〉. To lowest order in time, the matrix ele-
ment of the time evolution operator between an initial state with all
spins intialized in |↓〉 and a �nal state with all qubits in |↑〉 receives
contributions in which each spin is �ipped precisely once (one such
contributing term, between the spin on the second site ofA and the
�rst spin of B, is shown.

ison, state preparation and readout of individual spins can
be done with high �delity and relative ease, and the ability
to massively parallelize spin-spin interactions between large
numbers of qubits is reasonably sophisticated; experiments
have successfully implemented some simple instances of the
Ising model with system sizes ranging from tens [9] to many
hundreds of spins [10]. Moreover, recent developments in
ion-trapping experiments raise the exciting prospect of im-
plementing arbitrary Ising interaction graphs in systems of
(potentially) many tens of trapped ions [11]. For this reason,
�nding results analogous to BosonSampling for simple spin
models is highly desirable, and potentially a�ords a simpler
route towards the experimental demonstration of an e�cient
quantum task that, under extremely plausible assumptions
about classical complexity theory, cannot be e�ciently per-
formed by a classical system [3, 12].

Our goal in this manuscript is to show that the dynamics of
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an experimentally implementable commuting spin model—
the Ising model with no transverse �eld—can induce an out-
put distribution over the spin states that is hard to sample
from classically. �e general strategy, which will be elabo-
rated on below, is to divide a set of Ising spins into two mutu-
ally interacting registers, each havingN spins (see Fig. 1). �e
N spins in the �rst and second register can be placed in corre-
spondence with the N row and column labels, respectively, of
anN×N matrix J ; each of theN 2 pairwise Ising couplings Ji, j
between a spin (i) in one register and a spin (j) in the other is
a matrix element of J . By initializing the system in a spatially
homogeneous product state and then le�ing it evolve under
Ising interactions for a short time, it can be shown that a
single probability of the output distribution induced by mea-
surement is proportional to the square of the permanent of J ,
plus an o(1) correction. �is is enough, using a tool known
as “Stockmeyer counting” [13], to imply a hardness of “exact
sampling” result: no e�cient classical randomized algorithm
can sample from exactly this distribution, under a ubiquitous
hardness assumption (namely, that the Polynomial-time Hi-
erarchy does not collapse). Note that in a recent paper [12],
BosonSampling was directly generalized to the context of
spin Hamiltonians. However, our work encounters the per-
manent in a fundamentally di�erent way; an important dif-
ference is that our results do not rely on a “diluteness crite-
rion”, and thus N is set by—as opposed to much less than—
the number of physical qubits. Much like other “exact sam-
pling” results, our result also demonstrates hardness to clas-
sically sample from any distribution in which all probabilities
are within a constant multiplicative factor of the ideal quan-
tum distribution. However, unlike BosonSampling, a recent
proposal of Bremner, Montanaro and Shepherd (sometimes
called “IQP” sampling), and �antum Fourier Sampling, it
is not yet clear whether the distributions we consider can
be used to show an “approximate-sampling” hardness result
[3, 4, 14]. �is would show something far stronger: there is
no classical algorithm that can sample from any distribution
inverse polynomial in total variation distance from the ideal
quantum distribution.

II. THE MODEL

�e model we consider consists of 2N spin-1/2 particles,
which we divide into two subla�ices ofN spins each, denoted
A and B (blue and red spins in Fig. 1). We consider quench
dynamics under an Ising Hamiltonian with exclusively two-
body inter-subla�ice interactions (but no interactions within
either subla�ice), which can take arbitrary integer values,

H =
∑

i, j

Ji, j σ̂
x
i τ̂

x
j . (1)

Here, Pauli operators σ̂ act on the spins of subla�iceA, while
Pauli operators τ̂ act on the spins of subla�ice B. �ese spins
could be, for example, two subsets of ions in a Paul trap,
where the |↓〉 and |↑〉 are, respectively, the electronic ground

state and some long-lived metastable state (in general either
an excited hyper�ne level of the electronic ground-state man-
ifold or a dipole-forbidden optical excitation). �e Ising in-
teractions can then be implemented via a spatially-structured
Molmer-Sørensen interaction [11, 15, 16].

We consider a quantum quench in which the system is ini-
tialized at time t = 0 with all of the spins (in both registers)
in the spin-down state along the z-direction,

|ψ (0)〉 =
⊗

i ∈A
|↓〉i

⊗

j ∈B
|↓〉j . (2)

We then allow the system to evolve under the Hamiltonian
in Eq. (1) for a time t .

III. OUTPUT DISTRIBUTION

A�er evolution for a time t under the action of H , mea-
surement in the z basis samples from the induced probability
distribution

Pt (σ1, . . . ,σN ,τ1, . . . ,τN )

=| 〈σ1, . . . ,σN ,τ1, . . . ,τN | exp(−iH t ) |↓, . . . ,↓〉 |2, (3)

where σj ,τj =↓ ,↑. We are interested in just one such proba-
bility,

Pt ≡ Pt (↑, . . . ,↑) = | 〈↑, . . . ,↑| exp(−itH ) |↓, . . . ,↓〉 |2 ≡ |Mt |2,
to end in the state with all spins in both registers pointing up.
By writing an individual term in the Hamiltonian as

σ̂xi τ̂
x
j = σ̂

+
i τ̂
+
j + σ̂

+
i τ̂
−
j + σ̂

−
i τ̂
+
j + σ̂

−
i τ̂
−
j , (4)

it is straightforward to see that repeated applications of H ,
and thus time evolution, generates population in all possible
spin states in the z basis. Expanding e−iH t as a power series
in time, the lowest-order in time non-vanishing contribution
to the matrix element Mt = 〈↑, . . . ,↑| exp(−itH ) |↓, . . . ,↓〉
arises at order tN , because every spin needs to be �ipped at
least once. �e contributing terms contain exactly N powers
of operators σ̂+i τ̂

+
j , with no repetitions of the indices i and j,

so that each qubit gets �ipped from |↓〉 to |↑〉 exactly one time;
see Fig. 2 for an illustration of such a term for N = 3. It is
straightforward to show that, to order tN , the matrix element
Mt is given by

Mt =
(−it )N
N !

× N !
∑

σ

N∏

j=1
Jσ (j ), j +O (tN+2)

= (−it )N Per(J ) +O (tN+2), (5)

where the summation is over all permutations σ of the inte-
gers i = 1, . . . ,N . As a result, and de�ning P = |Per(J ) |2,
we have

Pt = t2N
(
P +O (t2)

)
. (6)

We next aim to place a constraint on how t must scale with
N in order to ensure that the O (t2) additive error to the per-
manent is o(1) with respect to the system size N .
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FIG. 2. Example of a single term contributing to the matrix element
Mt at lowest order in time (tN , here with N = 3). Here, all spins
are �ipped from down to up by a particular pairing o� of the spins
between theA and B subla�ices. �e depicted process contributes
a term (J1,2 × J3,1 × J2,3)× (t3/3!) to Mt . �e set of all possible ways
to pair the spins in subla�ice A with the spins in subla�ice B is
in one-to-one correspondence with terms in the permanent of the
matrix Ji, j , and thus Mt is proportional to this permanent.

IV. HIGHER ORDERS IN TIME

As discussed above, the lowest-order in time contribution
to the matrix element Mt comes at order N . It is not hard to
see that all other contributing terms occur at order m such
that m − N is a positive even integer. In particular, take N+−
to be the number of times an operator σ̂+i τ̂

−
j occurs inside the

matrix element, and similarly for N−+, N++, and N−−, such
that N++ + N−− + N+− + N−+ = m. Since we need to �ip
the same number of qubits in both registers, we must have
N+− = N−+. Also, the total number of �ipped qubits is equal
to 2(N++ − N−−), and since all qubits need to be �ipped, we
have N++ − N−− = N . Now, de�ning p (n) to be the parity of
the integer n, we have

p (m) = p (N++ + N−− + 2N+−)
= p (N++ + N−−)
= p (N++ − N−−)
= P (N ), (7)

which shows that m − N is an even integer. �e matrix ele-
ment in question can therefore be expanded as

Mt =

∞∑

α=0
〈↑, . . . ,↑| (−itH )N+2α

(N + 2α )!
|↓, . . . ,↓〉 ≡

∞∑

α=0
M (α )

t , (8)

and from above we have

M (0)
t = (−it )N Per(J ). (9)

De�ning δMt =
∑∞

α=1 M
(α )
t , such that Mt = M (0)

t + δMt , we
can write

Pt = |M (0)
t |2 + 2<[M (0)

t δMt ] + |δMt |2
= t2N

(
P + ηt

)
, (10)

where

ηt ≡ (2<[M (0)
t δMt ] + |δMt |2)/t2N

≤ |δMt |(2|M (0)
t | + |δMt |)/t2N . (11)

For notational simplicity, here we will assume that the entries
of J are drawn from the set {−1, 0, 1}; note that nothing about
our argument would change if arbitrary integers would use,
except that the time t would be rescaled in the bounds below
by max(Ji, j ). Using 〈↑, . . . ,↑| Hm |↓, . . . ,↓〉 ≤ N 2m ‖σ̂x ‖2m =
N 2m , M (α )

t can be bounded as |M (α )
t | ≤ (N 2t )N+2α /(N +2α )!.

�erefore,

|M (0)
t | ≤

(N 2t )N

N !
, (12)

|δMt | ≤ (N 2t )N

N !

∞∑

α=1
(N 4t2)α ≤ 2

(N 2t )N

N !
(N 4t2). (13)

�e �nal inequality in Eq. (13) is valid for t2 ≤ 1/(2N 4), be-
cause 0 ≤ ∑∞

α=1 x
α ≤ 2x whenever 0 ≤ x ≤ 1/2. Plugging

Eqs. (12,13) into Eq. (11) leads to

ηt ≤ 4N 4t2 N 4N

(N !)2

(
1 + N 4t2

)
(14)

≤ 6N 4t2 N 4N

(N !)2
≤ t2poly(N)e2N (lnN+1), (15)

with the �nal inequality obtained by Stirling’s approxima-
tion. It follows immediately that ηt = o(1) is guaranteed as
long as

t = o(e−2N lnN ). (16)

V. HARDNESS OF SAMPLING

Here we prove our main theorem, establishing a very un-
likely complexity theoretic consequence which would arise
naturally from the presumed existence of a classical algo-
rithm that samples exactly from the output distribution de-
scribed in the prior sections. Similar arguments to the one
sketched here are implicit in other works on quantum hard-
ness of sampling results starting with the BosonSampling
proposal [4].

We �rst begin with a very brief overview of the computa-
tional complexity theoretic components necessary to under-
stand this hardness of sampling result. Computing exactly
the permanent of an N × N matrix X with integer entries is
as hard as computing the number of satisfying assignments
to a boolean formula. We therefore say it is a #P-hard prob-
lem, as established by Valiant [17]. When X has nonnegative
integer entries this problem is also in #P.

For our purposes, we will be interested in the complexity
of computing multiplicative estimates to the permanent. We
say an algorithm A e�ciently computes a multiplicative es-
timate to a function f if, given input x , the output of A is
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within a 1 ± ϵ multiplicative factor of f (x ) in time polyno-
mial in N and 1/ϵ . A famous result of Jerrum, Sinclair and
Vigoda gives an algorithm for e�ciently computing a multi-
plicative estimate to the permanent of a matrix with nonneg-
ative entries [18]. On the other hand, it can be shown using
a binary search and padding argument that computing such
an estimate to the permanent (or even the square of the per-
manent) of a matrix with general integer entries is in fact #P-
hard (see e.g., [4, 19]). �erefore computing these estimates
are as hard as computing the permanent exactly. How pow-
erful is #P? We know from Toda’s �eorem that any problem
in the Polynomial-time hierarchy, or PH, can be solved using
the ability to solve a #P-hard problem [20]. Being a bit more
formal, Toda’s theorem tells us that PH ⊆ P#P.

Now, for any N ×N matrixX de�neDX to be the outcome
distribution from Section III that arises from starting in the
|↓, . . . ,↓〉 state, evolving for a particular time t under the ac-
tion of the Hamiltonian from Eq. (1) with coupling constants
Ji, j set to the entries of X , and measuring in the z basis. As
shown in Sections III and IV, the probability of observing the
|↑, . . . ,↑〉 outcome at time t is proportional to the square of
the permanent ofX plus an o(1) correction, provided that t is
chosen to be o(e−2N lnN ). Notice that this probability is expo-
nentially small. �erefore, to get any reasonable estimate by
repeated sampling we would need an exponential number of
samples. Indeed, this does not imply an e�cient quantum al-
gorithm for computing the permanent. Nonetheless, we can
use the fact that a single exponentially small amplitude is
proportional to the permanent to argue about the classical
intractability of sampling from this distribution.

Suppose we have an e�cient classical sampler which sam-
ples from the same distribution. We de�ne this to be an ef-
�cient randomized algorithm that takes as input an N × N
integer matrix X and outputs a sample from the distribution
DX . A classic result of Stockmeyer gives an algorithm for
computing a multiplicative estimate to the probability of any
given outcome of an e�cient classical sampler in the third
level of the PH, or Σ3 [13]. Using this result, together with
the presumed existence of an e�cient classical sampler for
our quantum distribution, we can compute a multiplicative
estimate to the square of the permanent of an arbitrary inte-
ger matrix in the third level of the PH. As mentioned above,
this is a #P-hard problem. �is tells us we can solve any
problem in #P in the third level of the Polynomial-time hi-
erarchy, or formally, that P#P ⊆ Σ3. Combining this with
Toda’s theorem, we have that PH ⊆ P#P ⊆ Σ3, and so the en-
tire Polynomial-time Hierarchy collapses to the third level, as
claimed. �erefore, it is very unlikely that an e�cient clas-
sical sampler for the distribution with probabilities given by
Equation 3 exists.

VI. DISCUSSION AND IMPLICATIONS

�ese results extend several key ideas of BosonSampling
to the context of spin dynamics under Ising spin Hamiltoni-

ans. Just like non-interacting bosons, the Ising model with-
out a transverse �eld is o�en viewed—from the perspective
of many-body quantum physics—to be trivial, since it can be
trivially diagonalized. However, just as with non-interacting
bosons, this point of view stems from a restricted notion of
what it means to “simulate” a quantum system. As in the case
of non-interacting bosons, it is indeed classically e�cient to
compute low-order correlation functions of operators in the
model we study [21, 22], but sampling from the output dis-
tribution is simply a more general (and less trivial) task.

Another interesting motivation for our result comes from
the desire to classify all two-qubit commuting Hamiltonians.
Suppose we start in a computational basis state of n qubits,
and can apply a �xed two-qubit Hamiltonian to any pair of
qubits. A recent result of Bouland, Mancinska, and Zhang
gave a hardness of sampling classi�cation for this model [1].
�ey prove, in all cases except the one we consider (in which
the two qubit Hamiltonian is X ⊗ X ) that the corresponding
sampling task is classically hard, as long as the commuting
Hamiltonian is capable of generating entanglement from a
computational basis state. Otherwise, the output is in a prod-
uct state and clearly classically simulable. �us our hardness
result completes the sampling hardness classi�cation of the
complete class of two-qubit commuting Hamiltonians (see
their paper for additional details [1]).
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