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The first “Quantum supremacy” claims 
have now been made…

Google “Sycamore” in late 2019 USTC “Jiuzhang” in late 2020

Today: latest evidence that these random quantum circuit experiments 
are solving hard problems for classical computers
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Why random circuits?

• Experimentally feasible
• Hardness at comparatively low depth and system size

• Advantages for verification/benchmarking
• e.g., Output distribution of Google’s random circuits 

have “Porter-Thomas” property 
• For any outcome x, Pr

!
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%
∼ 𝑒&$

• We can use this property to calculate the ideal score of 
a random circuit on benchmarking tests (e.g., to 
understand the ideal “cross-entropy” score)
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Agenda

1. Summarize the latest theoretical hardness results for noiseless
random quantum circuits [BFNV’19][BFLL’21]

2. Show that these hardness results extend to certain models of noisy
quantum experiments [BFLL’21]

3. Finally, give new heuristic classical algorithms for simulating noisy 
random circuits in 1D [NJF’20]
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Part 1: Theoretical hardness results for noiseless
random quantum circuits [BFNV’19][BFLL’21]
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Random circuit sampling
• Current q.s proposals solve “random quantum circuit 

sampling”
• i.e., the hard problem is to sample from the output 

distribution of a randomly chosen quantum circuit

• Theory goal: prove impossibility of an efficient 
“classical Sampler” algorithm that:
• takes as input a random circuit C with output distribution 𝐷!

over 0,1 "

• outputs a sample from any distribution 𝑋 so that:
• 𝑋 − 𝐷! '( ≤ 𝜖 with high probability over choice of circuit C

All distributions over 0,1 !

𝜖

𝐷"
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Proof first step: from sampling to computing
• Recall, our goal is to prove there does not exist a “classical Sampler” 

algorithm (under standard complexity theory assumptions)

• By well-known reductions [Stockmeyer ’85], [Aaronson & Arkhipov ’11] it 
suffices to prove that estimating the output probability of a random 
quantum circuit is #P-hard

Classical 
sampling

Computing 
output 

probabilities*

Stockmeyer
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Formal statement of q. supremacy conjecture
• Definition: Let the “output probability”, 𝑝. 𝐶 = 0/ 𝐶 0/ 0

• Then consider the 𝛿 − 𝑹𝒂𝒏𝒅𝒐𝒎 𝑪𝒊𝒓𝒄𝒖𝒊𝒕 𝑬𝒔𝒕𝒊𝒎𝒂𝒕𝒊𝒐𝒏 problem:

• To prove goal, it suffices to show that the 𝛿 = 𝑂 1
0!

problem is #P-hard

• Our results (as well as work by Movassagh ’20 & Kondo et. al. ’21): what
we know is #P-hard for C on 𝑛 qubits, size 𝑚 = 𝑂(𝑛 ⋅ 𝑑)

Given as input circuit C, output q so that 𝑞 − 𝑝) 𝐶 ≤ 𝜹 with 
probability 2/3 over C

Goal!

𝛿
2# $% &!

[2018] 𝑂 2#!2#%(& ()* &) [2021]
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Hardness conjecture for BosonSampling

• In the case of BosonSampling, similar arguments take us “even closer” to 
the goal!
• With respect to BosonSampling with 𝑛 photons, 𝑛! modes:

• So we’re only off by a factor of 6 in the exponent!
• But… we have hit a barrier, having to do with noise resilience of these 

techniques (more on this in a moment…)

Goal!

𝛿
,

-"($%)
[2011]
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Proof techniques
• The problem reduces to polynomial

extrapolation on faulty data points
[AA’11, BFNV’19, Mov’20]
• i.e., Given 𝑂(𝑑") faulty evaluation points 

{(𝑥# , 𝑦#)} to a polynomial p(x) of degree 𝑑
where:
1. 𝑥! are equally spaced in the interval 

[0, Δ ≪ 1]
2. And we know at least 2/3 of 𝑦! are 𝛿-

close to p(𝑥!)
• Compute an estimate to p(1)

• As compared with prior methods our 
new method [BFLL’21]:
• tolerates more errors
• reduces the extrapolation error 
• greatly simplified proof

0 1Δ 𝑥

𝑃(𝑥)
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Part 2: Hardness arguments for noisy
experiments [BFLL’21]
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Hardness of noisy random circuits [BFLL’21]
• Without error mitigation noise eventually overwhelms

• e.g., Google’s RCS experiment  ~0.2% fidelity and 99.8% noise

• How can we model this theoretically for random circuits?
• Each random gate 𝐶0 is followed by two qubit depolarizing noise channel:
• ℰ0 = 1 − 𝛾 𝜌 + 1

23
∑4,5∈𝒫×𝒫9(:,:)( 𝜎4 ⊗ 𝜎5)𝜌(𝜎4 ⊗ 𝜎5)

• That is, we can think about choosing a noisy random circuit by:
• First pick ideal circuit 𝐶 = 𝐶;𝐶;92…𝐶2 from the random circuit distribution
• Then environment chooses operators 𝑁, from a distribution 𝒩 (i.e., via ℰ0)
• We get a sample from output distribution of 𝑁 ⋅ 𝐶 without learning the noise 

operators
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The same arguments work for the noisy case!

• By linearity, can write the output probability of the noisy circuit as:
• 𝐸<∼𝒩 0" 𝑁 ⋅ 𝐶 0" ? = 𝐸<∼𝒩 𝑝@(𝑁 ⋅ 𝐶)

• The previous arguments can be easily extended to give a worst-to-
average case reduction for estimating this noisy output probability to 
precision 256(8 9:; 8)

• [Fujii ‘16] has shown that this quantity is also hard to compute in the 
worst-case if noise rate, 𝛾, is a sufficiently small constant
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But there’s also a (trivial) algorithm here!

• We’ve now established that computing output probabilities of noisy random 
circuits of size 𝑚 = 𝑛 ⋅ 𝑑 is hard to within precision 201(2 345 2)

• Issue: uncorrected depolarization noise causes output distribution to rapidly 
converge to uniform as system size grows
• And it’s clearly not hard to output a probability from the uniform distribution!

• How fast is this convergence?
• Google’s conjecture: for random circuits 2$%(') [e.g., Boixo, Smelyansky, Neven ‘17]!

• If we believe this too, then our result is essentially tight in this setting!
• Moreover, this presents a barrier for the noiseless setting

• i.e., if we want to improve our results we need to find proof techniques that *do not 
prove hardness in the presence of noise*!
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Part 3: Simulation algorithms for noisy 
quantum circuits [NJF ’20]
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New easiness results
• There are many simulation algorithms for restricted classes of random 

quantum circuits (e.g., [Napp et. al. ’20], [Pan & Zhang’21])
• Our focus: 1D random circuits with Haar random two-qubit gates and 

local depolarizing noise 
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Numerical results for noisy 1D RCS [NJF’20]
• We consider the “MPO entanglement entropy” of the output mixed state

• A measure of quantum correlations between two disjoint subsystems of qubits 
1,… , ℓ , [ℓ + 1,… , 𝑛]

• Reduces to standard entanglement entropy in case of pure states

• Motivation for this quantity: determines the cost of classical simulation
• Can compute the output probability in time ∼ 2A"#$%&'(%)) B

• Because “Maximum MPO entanglement entropy” can be used to bound the required bond 
dimension, 𝜒, needed to accurately describe a mixed state

• Running time is 𝑝𝑜𝑙𝑦(𝑛, 𝑑, 𝜒) and so exponential in 𝑆*+,&-./&00(𝜌)
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Growth of MPO EE with depth 
[NJF’20]
• Each plot has different fixed two-qubit noise rate 𝑝
• For each system size 𝑛 = 4…18 we compute the 

Max MPO Entanglement Entropy measure, averaged 
over 𝑁6 =24 different random circuits

1. We see that for each noise rate, there’s a peak 
depth 

2. Moreover at this peak depth, after sufficiently 
large system size, adding more qubits doesn’t 
change the Max MPO Entanglement Entropy

• So from the perspective of this particular algorithm, 
once we fix the noise rate, hardness “saturates” at 
fixed system size.
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Plots from [NJF ’20] (2)

• To see this saturation behavior more 
directly we plot Number of qubits vs 
Max MPO Entanglement Entropy 
• Each curve represents a different noise 

rate at optimal depth (from prior plot)
• Again, we see there’s a maximum 

system size, determined by the noise 
rate, after which we don’t gain in 
complexity using this measure
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Conclusions

• Numerically, we observe that for noisy 1D random circuits there is a sense 
in which quantum correlations peak at a particular system size
• We can make use of this observation to compute noisy output 

probabilities using Matrix Product Operator (MPO) methods
• On the other hand, we can prove that computing noisy output 

probabilities (to precision 256(8 9:; 8)) is hard for 2D random circuits 
below a noise threshold
• We think this precision is (essentially) tight.
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Thanks!
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