The power of random quantum circuits

Bill Fefferman

(University of Chicago)

Based on **"On the complexity and verification of quantum random circuit sampling**" with A. Bouland, C. Nirkhe, U. Vazirani (Nature Physics, arXiv: 1803.04402)

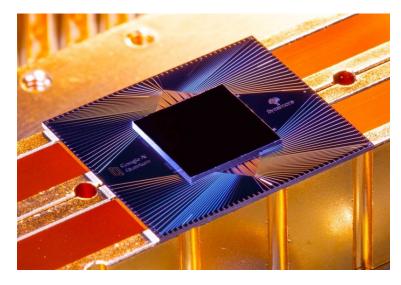
"Noise and the frontier of quantum supremacy" with A. Bouland, Z. Landau, Y. Liu (arXiv: 2102.01738)

And Efficient classical simulation of noisy random quantum circuits in one dimension with K. Noh, L. Jiang (Quantum, vol. 4, arXiv:2003.13163)

1

Invited talk, APS March Meeting, March 16, 2021

The first "Quantum supremacy" claims have now been made...



Google "Sycamore" in late 2019

USTC "Jiuzhang" in late 2020

Today: latest evidence that these random quantum circuit experiments are solving hard problems for classical computers

Why random circuits?

- Experimentally feasible
 - Hardness at comparatively low depth and system size
- Advantages for verification/benchmarking
 - e.g., Output distribution of Google's random circuits have "Porter-Thomas" property
 - For any outcome x, $\Pr_{C}\left[|\langle x|C|0^{n}\rangle|^{2}=\frac{q}{N}\right]\sim e^{-q}$
 - We can use this property to calculate the ideal score of a random circuit on benchmarking tests (e.g., to understand the ideal "cross-entropy" score)

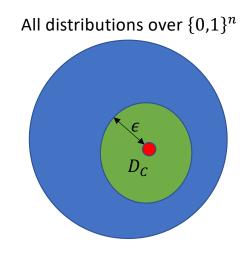
Agenda

- 1. Summarize the latest theoretical hardness results for *noiseless* random quantum circuits [BFNV'19][BFLL'21]
- 2. Show that these hardness results extend to certain models of *noisy* quantum experiments [BFLL'21]
- 3. Finally, give new heuristic classical algorithms for simulating noisy random circuits in 1D [NJF'20]

Part 1: Theoretical hardness results for *noiseless* random quantum circuits [BFNV'19][BFLL'21]

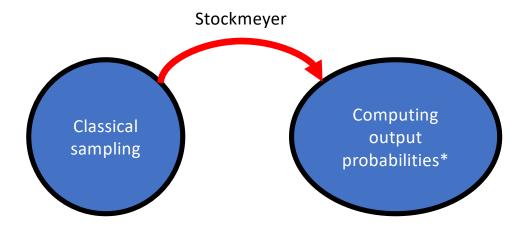
Random circuit sampling

- Current q.s proposals solve "random quantum circuit sampling"
 - i.e., the hard problem is to sample from the output distribution of a randomly chosen quantum circuit
- **Theory goal:** prove impossibility of an efficient *"classical Sampler"* algorithm that:
 - takes as input a random circuit C with output distribution D_C over $\{0,1\}^n$
 - outputs a sample from *any* distribution X so that:
 - $|X D_C|_{TV} \le \epsilon$ with high probability over choice of circuit C



Proof first step: from *sampling* to *computing*

- Recall, our goal is to prove there *does not* exist a "classical Sampler" algorithm (under standard complexity theory assumptions)
- By well-known reductions [Stockmeyer '85], [Aaronson & Arkhipov '11] it suffices to prove that *estimating* the output probability of a *random* quantum circuit is **#P**-hard

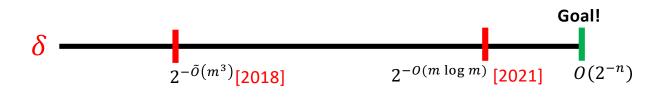


Formal statement of q. supremacy conjecture

- Definition: Let the "output probability", $p_0(C) = |\langle 0^n | C | 0^n \rangle|^2$
- Then consider the δ *Random Circuit Estimation* problem:

Given as input circuit C, output q so that $|q - p_0(C)| \le \delta$ with probability 2/3 over C

- To prove goal, it suffices to show that the $\delta = O\left(\frac{1}{2^n}\right)$ problem is **#P**-hard
- Our results (as well as work by Movassagh '20 & Kondo et. al. '21): what we know is **#P**-hard for C on n qubits, size $m = O(n \cdot d)$



8

Hardness conjecture for BosonSampling

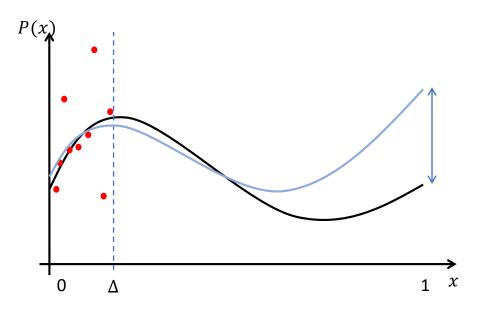
- In the case of BosonSampling, similar arguments take us "even closer" to the goal!
- With respect to BosonSampling with n photons, n^2 modes:

$$\delta = \frac{1}{e^{O(n^4)}} [2011] \qquad \qquad \frac{1}{e^{6n \log n}} [2021] \qquad \frac{1}{e^{n \log n}}$$

- So we're only off by a factor of 6 in the exponent!
- But... we have hit a barrier, having to do with *noise resilience* of these techniques (more on this in a moment...)

Proof techniques

- The problem reduces to polynomial extrapolation on faulty data points [AA'11, BFNV'19, Mov'20]
 - i.e., Given O(d²) faulty evaluation points
 {(x_i, y_i)} to a polynomial p(x) of degree d
 where:
 - 1. x_i are equally spaced in the interval $[0, \Delta \ll 1]$
 - 2. And we know **at least** 2/3 of y_i are δ **close** to $p(x_i)$
 - Compute an estimate to p(1)
- As compared with prior methods our new method [BFLL'21]:
 - tolerates more errors
 - reduces the extrapolation error
 - greatly simplified proof



10

Part 2: Hardness arguments for *noisy* experiments [BFLL'21]

Hardness of noisy random circuits [BFLL'21]

- Without error mitigation noise eventually overwhelms
 - e.g., Google's RCS experiment ~0.2% fidelity and 99.8% noise
- How can we model this theoretically for random circuits?
 - Each random gate C_i is followed by two qubit depolarizing noise channel:

•
$$\mathcal{E}_{i} = (1 - \gamma)\rho + \frac{\gamma}{15} \sum_{\alpha, \beta \in \mathcal{P} \times \mathcal{P} - (I,I)} (\sigma_{\alpha} \otimes \sigma_{\beta})\rho(\sigma_{\alpha} \otimes \sigma_{\beta})$$

- That is, we can think about choosing a noisy random circuit by:
 - First pick ideal circuit $C = C_m C_{m-1} \dots C_1$ from the random circuit distribution
 - Then environment chooses operators N, from a distribution \mathcal{N} (i.e., via \mathcal{E}_i)
 - We get a sample from output distribution of $N \cdot C$ without learning the noise operators

The same arguments work for the noisy case!

- By linearity, can write the output probability of the noisy circuit as:
 - $E_{N \sim \mathcal{N}}[|\langle 0^n | N \cdot C | 0^n \rangle|^2] = E_{N \sim \mathcal{N}}[p_0(N \cdot C)]$
- The previous arguments can be easily extended to give a worst-toaverage case reduction for estimating this noisy output probability to precision $2^{-O(m \log m)}$
- [Fujii '16] has shown that this quantity is also hard to compute in the worst-case if noise rate, γ , is a sufficiently small constant

But there's also a (trivial) algorithm here!

- We've now established that computing output probabilities of noisy random circuits of size $m = n \cdot d$ is **hard** to within precision $2^{-O(m \log m)}$
- **Issue:** uncorrected depolarization noise causes output distribution to rapidly converge to uniform as system size grows
 - And it's clearly not hard to output a probability from the uniform distribution!
- How fast is this convergence?
 - **Google's conjecture**: for random circuits $2^{-O(m)}$ [e.g., Boixo, Smelyansky, Neven '17]!
- If we believe this too, then our result is *essentially tight* in this setting!
- Moreover, this presents a **barrier** for the *noiseless* setting
 - i.e., if we want to improve our results we need to find proof techniques that *do not prove hardness in the presence of noise*!

Part 3: Simulation algorithms for noisy quantum circuits [NJF '20]

New easiness results

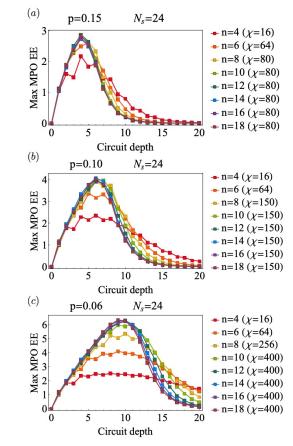
- There are many simulation algorithms for restricted classes of random quantum circuits (e.g., [Napp et. al. '20], [Pan & Zhang'21])
- Our focus: 1D random circuits with Haar random two-qubit gates and *local depolarizing noise*

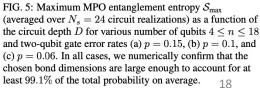
Numerical results for noisy 1D RCS [NJF'20]

- We consider the "MPO entanglement entropy" of the output mixed state
 - A measure of quantum correlations between two disjoint subsystems of qubits [1, ..., l], [l + 1, ..., n]
 - Reduces to standard entanglement entropy in case of pure states
- Motivation for this quantity: determines the cost of classical simulation
 - Can compute the output probability in time ~ $2^{S_{max-MPO-EE}(\rho)}$
 - Because "Maximum MPO entanglement entropy" can be used to bound the required bond dimension, χ , needed to accurately describe a mixed state
 - Running time is $poly(n, d, \chi)$ and so exponential in $S_{max-MPO-EE}(\rho)$

Growth of MPO EE with depth [NJF'20]

- Each plot has different fixed two-qubit noise rate p
- For each system size $n = 4 \dots 18$ we compute the Max MPO Entanglement Entropy measure, averaged over $N_s = 24$ different random circuits
- 1. We see that for each noise rate, there's a peak depth
- 2. Moreover at this peak depth, after sufficiently large system size, adding more qubits doesn't change the *Max MPO Entanglement Entropy*
- So from the perspective of this particular algorithm, once we fix the noise rate, hardness "saturates" at fixed system size.





Plots from [NJF '20] (2)

- To see this saturation behavior more directly we plot Number of qubits vs *Max MPO Entanglement Entropy*
- Each curve represents a different noise rate at optimal depth (from prior plot)
- Again, we see there's a maximum system size, determined by the noise rate, after which we don't gain in complexity using this measure

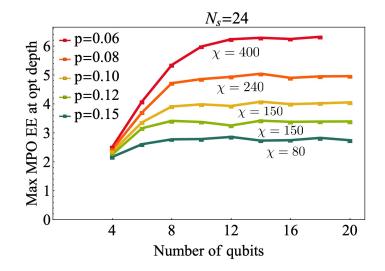


FIG. 8: Maximum achievable MPO entanglement entropy at the optimal circuit depth S^{\star}_{max} for various two-qubit gate error rates $0.06 \le p \le 0.15$ and number of qubits $4 \le n \le 18$. The bond dimension χ used in each case is specified next to each curve.

Conclusions

- Numerically, we observe that for noisy 1D random circuits there is a sense in which quantum correlations peak at a particular system size
- We can make use of this observation to compute noisy output probabilities using Matrix Product Operator (MPO) methods
- On the other hand, we can prove that computing noisy output probabilities (to precision $2^{-O(m \log m)}$) is hard for 2D random circuits below a noise threshold
 - We think this precision is (essentially) tight.

Thanks!