Quantum Pseudoentanglement

Bill Fefferman (University of Chicago)

Joint with Adam Bouland, Soumik Ghosh, Umesh Vazirani, Jack Zhou

Based on arXiv:2211.00747

Quantum entanglement is subtle!

- Quantum entanglement is fundamental for quantum computation
- But there is still a lot we don't understand
- This work: quantum entanglement "is not feelable"
 - Will construct an ensemble of quantum states with *low entanglement* which cannot be efficiently distinguished from maximally entangled states even if given many copies

(illustration of entanglement from nobelprize.org)

Motivation 1: *Entanglement, Geometry and Complexity*

- Major theme: Entanglement in the CFT = geometry in AdS (e.g., RT formula, ER=EPR...)
- Our result: Entanglement cannot be "felt" or efficiently observed
- If corresponding geometry is "feelable", then the AdS/CFT dictionary must be hard to compute (in spirit of [BFV'19][GH'20])

Motivation 2: random quantum states

- Random quantum states, drawn from the Haar measure, are an important resource
- But they are of limited practicality from a computational point of view
 - Basic counting arguments tell us we need $\exp(n)$ size circuits to approximately prepare most states from $|0^n\rangle$
- To get over this, a central concept in quantum information has been *"pseudorandom"* ensembles of efficiently preparable quantum states which *mimic properties* of truly random quantum states

Information theoretic pseudorandomness

- A quantum 2-design is an ensemble of quantum states with the property that *no algorithm* can distinguish 2 copies from truly random states
- This notion is now a very central topic in quantum information theory with many important applications e.g., to
 - randomized benchmarking
 - quantum advantage experiments
 - quantum gravity...

Computational pseudorandomness

- In computer science, we generally talk about the different notion of *computational* pseudorandomness
- i.e., these are efficiently preparable quantum states that can't be distinguished from truly Haar random states by any efficient quantum algorithm A given poly(n) copies
- This generally requires complexity assumptions
- Classically, this notion enables a wide variety of applications not known to be possible in the information theoretic setting
 - Public key cryptography
 - Homomorphic encryption
 - Derandomization

What is the relation between pseudorandomness and entanglement?

- A typical Haar random quantum state is *maximally* entangled.
- Quantum *t*-designs are also close to *maximally* entangled (for any $t \ge 2$)
- **Our result:** Computational pseudorandom states *do not need to be* extremely entangled!

Proof sketch

The Ji, Liu & Song construction [JLS'18][BS'19]

- Consider states of the form:
 - $|\psi_{f_k}\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} f_k(x) |x\rangle$
 - Where $f_k: \{0,1\}^n \to \{\pm 1\}$ is *any* quantum secure pseudorandom function
- Main result [JLS'18] [BS'19]: $\{|\psi_{f_k}\rangle\}$ is a computational pseudorandom state (i.e., a "PRS") assuming quantum secure cryptography is possible.
 - 1. Can efficiently prepare $|\psi_{f_k}\rangle$ given key k
 - 2. without knowledge of k, no efficient quantum algorithm can distinguish polynomially many copies of $|\psi_{f_k}\rangle$ from copies of a Haar random state

• i.e.,
$$|\Pr_{k}[A(|\psi_{f_{k}}\rangle^{\otimes poly(n)}) = 1] - \Pr[A_{|\phi\rangle\sim Haar}(|\phi\rangle^{\otimes poly(n)}) = 1]| < \epsilon$$

How entangled is the JLS construction?

- Lower bound [JLS'18]: Let ρ be RDM of $|\psi_{f_k}\rangle$ wrt subsystem A on n/2 qubits, then S($\rho)=\omega(\log(n))$ whp
- Lemma: $Tr[\rho^2] < \frac{1}{n^c}$ for all constant c, whp
- **Pf:** If not, then the swap test on subsystem A of two copies of $|\psi_{f_k}\rangle$ would be an efficient distinguisher from a Haar random state
 - This test succeeds with probability $\frac{1}{2} + \frac{Tr[\rho^2]}{2}$
- Lower bound on entanglement directly follows from Lemma
 - Since $S(\rho) \ge -\log(Tr[\rho^2])$ by Jensen's inequality
- We didn't know of a PRS with entanglement saturating this lower bound...

How to make a low entanglement PRS

- Consider the JLS construction and divide the *n* qubits in half, denote the subsystems *A*, *B*
 - i.e., $|\psi_f\rangle = \sum_{i \in \{0,1\}^{n/2}, j \in \{0,1\}^{n/2}} f(i,j)|i\rangle_A |j\rangle_B$
- It will be convenient to think of this state as encoded by a "pseudorandom matrix" C_f with (i, j) entry = f(i, j)

Subsystem B

$$C_{f} = \begin{pmatrix} f(0^{\frac{n}{2}}, 0^{\frac{n}{2}}) & \cdots & f(0^{\frac{n}{2}}, 1^{\frac{n}{2}}) \\ \vdots & \ddots & \vdots \\ f(1^{\frac{n}{2}}, 0^{\frac{n}{2}}) & \cdots & f(1^{\frac{n}{2}}, 1^{\frac{n}{2}}) \end{pmatrix}$$
Subsystem A

• It's not hard to see that the RDM on subsystem A, $\rho = \frac{1}{2^n} C_f C_f^T$

Our construction (informal)

- **Goal:** Minimize $S(\rho) = S\left(\frac{1}{2^n}C_fC_f^T\right)$
- Idea: Pick a small subset of rows, and repeat those rows many times, e.g.,

$$C_{f} = \begin{pmatrix} f(0^{\frac{n}{2}}, 0^{\frac{n}{2}}) & \cdots & f(0^{\frac{n}{2}}, 1^{\frac{n}{2}}) \\ \vdots & \vdots & \vdots \\ f(1^{\frac{n}{2}}, 0^{\frac{n}{2}}) & \cdots & f(1^{\frac{n}{2}}, 1^{\frac{n}{2}}) \end{pmatrix} \qquad C'_{f} = \begin{pmatrix} f(0^{\frac{n}{2}}, 0^{\frac{n}{2}}) & \cdots & f(0^{\frac{n}{2}}, 1^{\frac{n}{2}}) \\ \vdots & \vdots & \vdots \end{pmatrix}$$

• **Key point:** C'_f has reduced rank, so the new n qubit state $|\psi'_f\rangle = \frac{1}{\sqrt{2^n}} \sum_{i,j} C'_f(i,j) |i,j\rangle$ has a RDM ρ' so that $S(\rho') < S(\rho)$

Our construction (formal)

- How to select subset of repeated rows?
 - Rows of C'_f selected via a 2^{ℓ} -to-1 function g: $\left[2^{\frac{n}{2}}\right] \rightarrow \left[2^{\frac{n}{2}}\right]$ (i.e., $\forall y, |g^{-1}(y)| = 2^{\ell}$ or 0) That is, we define C'_f to be the matrix: $\left(C'_f\right)_{i,j} = \left(C_f\right)_{g(i),j}$ for all i, j

- Notice that $Rank(\rho') = Rank(C'_f C'_f^T) = Rank(C'_f) \le 2^{\frac{n}{2}-\ell}$
- And so the entanglement entropy of new state $S(\rho') \leq \frac{n}{2} \ell$
 - By Jensen's inequality: $S(\rho') \le \log(\operatorname{rank}(\rho'))$

Can we distinguish this reduction in rank?

- Recall, C'_f is constructed by taking pseudorandom matrix C_f and selecting repeated rows via a 2^{ℓ} -to-1 function g
 - **Construction:** $g(x) = h(h'(x) \mod 2^{\frac{n}{2}-\ell})$ where $h, h': \{0,1\}^{n/2} \to \{0,1\}^{n/2}$ are pseudorandom permutations
- We prove that a distinguisher that can tell apart C'_f from a uniformly random matrix can either distinguish C_f from a *truly* random matrix OR g from a *truly* random function
 - Neither can be done, as long as $\ell \leq \frac{n}{2} \log^2 n$
 - Proof follows from quantum collision bound [Aaronson and Shi'2004][Zhandry'12]

What have we done?

- We've shown that C'_{f} is a pseudorandom matrix
 - But it has rank $\leq 2^{\frac{n}{2}-\ell} = \log^2 n$ if $\ell = \frac{n}{2} \log^2 n$
- Correspondingly, the state $|\psi'_f\rangle = \sum_{i,j} (C'_f)_{i,j} |i\rangle |j\rangle$ is a PRS
- And the entanglement entropy $S(\rho') \leq \frac{n}{2} \ell = O(\log^2 n)$
- Very different from nearly maximal entanglement in quantum tdesigns!

Extension: PRS with "tunable" entanglement

- We can construct a PRS so that $S(\rho) = \Theta(k)$ for any $\log^2(n) \le k \le n$ whp
- Main technical hurdle: we need to lower bound how much entanglement we start with!
 - i.e., we construct a particular PRF $f: \{0,1\}^n \to \{\pm 1\}$ so that the corresponding state $|\psi_f\rangle = \frac{1}{\sqrt{2^n}} \sum_x f(x) |x\rangle$ has entanglement $S(\rho) = \Theta(n)$
- Then we can use our previous idea with a 2^{ℓ} -to-1 function, for suitable choice of ℓ , to give matching upper and lower bounds on entanglement

"Pseudoentanglement"

- Two ensembles of *n*-qubit quantum states $\{|\psi_k\rangle\}$ and $\{|\Phi_k\rangle\}$ indexed by a secret key $k \in \{0,1\}^{poly(n)}$ are (f(n), g(n)) -pseudoentangled if:
 - 1. Given k, both $|\psi_k\rangle$ and $|\Phi_k\rangle$ are efficiently preparable by a quantum algorithm
 - 2. If we aren't given k the ensembles are *computationally indistinguishable*
 - 3. The entanglement entropy between the first n/2 and second n/2 qubits of $\{|\psi_k\rangle\}$ is $\Theta(f(n))$ whp, whereas the entanglement entropy of $\{|\Phi_k\rangle\}$ is $\Theta(g(n))$
- **Prior work** [Gheorghiu & Hoban'20]: Assuming LWE is secure against quantum attack, there are (n, n O(1))-pseudoentangled state ensembles
 - Interestingly these ensembles *are distinguishable* from Haar
- Our result: Assuming any quantum secure cryptography is possible, we can construct states that are $(n, log^2(n))$ -pseudoentangled.
 - Our ensembles are also *computationally indistinguishable* from Haar random states

Open questions

- Is it possible to create pseudoentanglement using holographic states in which AdS/CFT is well-defined?
- Is it possible to construct pseudorandom quantum states to have **area law** entanglement?
 - So far, the low-entangled states we've constructed do not have a well-defined spatial geometry
- Do **sufficiently deep** random 2D spatially local quantum circuits give rise to pseudorandom states?
 - i.e., suppose I give you $(C|0^n))^{\otimes p(n)}$, without telling you the description of the random circuit C
 - Can you "feel" the difference between this and Haar random states?
- Applications of pseudoentanglement?

Thanks!