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Quantum entanglement is subtle!

• Quantum entanglement is fundamental for 
quantum computation
• But there is still a lot we don’t understand 
• This work: quantum entanglement “is not feelable”

• Will construct an ensemble of quantum states with low 
entanglement which cannot be efficiently distinguished 
from maximally entangled states even if given many 
copies

(illustration of entanglement 
from nobelprize.org)



Motivation 1: Entanglement, Geometry and 
Complexity

• Major theme: Entanglement in the CFT = geometry in AdS (e.g., RT formula, ER=EPR...)
• Our result: Entanglement cannot be “felt” or efficiently observed
• If corresponding geometry is “feelable”, then the AdS/CFT dictionary must be hard to compute (in 

spirit of [BFV’19][GH’20])

Quantum 
gravity in 
the AdS

AdS/CFT [Maldacena ‘97] is a conjectured duality between quantum 
gravity (the “bulk”) and a quantum mechanical system (the “boundary”)

Quantum 
mechanical

CFT

Dictionary



Motivation 2: random quantum states

• Random quantum states, drawn from the Haar measure, are an 
important resource
• But they are of limited practicality from a computational point of view

• Basic counting arguments tell us we need exp(𝑛) size circuits to 
approximately prepare most states from |0!⟩

• To get over this, a central concept in quantum information has been 
“pseudorandom” ensembles of efficiently preparable quantum states 
which mimic properties of truly random quantum states



Information theoretic pseudorandomness

• A quantum 𝟐-design is an ensemble of quantum states with the 
property that no algorithm can distinguish 2 copies from truly random 
states
• This notion is now a very central topic in quantum information theory 

with many important applications e.g., to 
• randomized benchmarking
• quantum advantage experiments
• quantum gravity…



Computational pseudorandomness

• In computer science, we generally talk about the different notion of 
computational pseudorandomness
• i.e., these are efficiently preparable quantum states that can’t be 

distinguished from truly Haar random states by any efficient quantum 
algorithm 𝐴 given 𝒑𝒐𝒍𝒚(𝒏) copies
• This generally requires complexity assumptions 
• Classically, this notion enables a wide variety of applications not known to be 

possible in the information theoretic setting 
• Public key cryptography
• Homomorphic encryption
• Derandomization



What is the relation between 
pseudorandomness and entanglement?
• A typical Haar random quantum state is maximally entangled.
• Quantum 𝑡-designs are also close to maximally entangled (for any 𝑡 ≥ 2)
• Our result: Computational pseudorandom states do not need to be 

extremely entangled!



Proof sketch



The Ji, Liu & Song construction [JLS’18][BS’19]
• Consider states of the form:

• 𝜓"! = #
$"
∑%∈ ',# " 𝑓)(𝑥)|𝑥⟩

• Where 𝑓): 0,1 ! → {±1} is any quantum secure pseudorandom function

• Main result [JLS’18] [BS’19]: {|𝜓!"⟩} is a computational pseudorandom 
state (i.e., a “PRS”) assuming quantum secure cryptography is possible.

1. Can efficiently prepare |𝜓"!⟩ given key 𝑘
2. without knowledge of 𝑘, no efficient quantum algorithm can distinguish 

polynomially many copies of |𝜓"!⟩ from copies of a Haar random state
• i.e., | Pr

!
[𝐴 𝜓"!

⊗$%&'())
= 1] − Pr 𝐴 + ~-../ 𝜙 ⊗$%&' ) = 1 |< 𝜖



How entangled is the JLS construction?

• Lower bound [JLS’18]: Let 𝜌 be RDM of |𝜓!!⟩ wrt subsystem A on 𝑛/2
qubits, then S(𝜌) = 𝜔(log(𝑛)) whp

• Lemma: 𝑇𝑟 𝜌/ < 0
1"

for all constant 𝑐, whp

• Pf: If not, then the swap test on subsystem A of two copies of |𝜓!"⟩ would 
be an efficient distinguisher from a Haar random state
• This test succeeds with probability #

$
+ *+ ,#

$

• Lower bound on entanglement directly follows from Lemma
• Since 𝑆 𝜌 ≥ −log(𝑇𝑟 𝜌$ ) by Jensen’s inequality

• We didn’t know of a PRS with entanglement saturating this lower bound…



How to make a low entanglement PRS

• Consider the JLS construction and divide the 𝑛 qubits in half, denote the 
subsystems 𝐴, 𝐵
• i.e.,  𝜓# =∑$∈ &,( "/#,)∈ &,( "/# 𝑓(𝑖, 𝑗)|𝑖⟩*|𝑗⟩+

• It will be convenient to think of this state as encoded by a “pseudorandom 
matrix” 𝐶! with (𝑖, 𝑗) entry = 𝑓(𝑖, 𝑗)

• It’s not hard to see that the RDM on subsystem 𝐴,  𝜌 = "
#,
𝐶!𝐶!$
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Our construction (informal)
• Goal: Minimize S 𝜌 = 𝑆 0

/,
𝐶!𝐶!2

• Idea: Pick a small subset of rows, and repeat those rows many times, 
e.g.,

• Key point: 𝐶′! has reduced rank, so the new 𝑛 qubit state   
𝜓!3 = 0

/,
∑4,6 𝐶!3 𝑖, 𝑗 |𝑖, 𝑗⟩ has a RDM 𝜌′ so that 𝑆 𝜌- < 𝑆(𝜌)
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Our construction (formal)
• How to select subset of repeated rows?

• Rows of 𝐶#- selected via a 2ℓ-to-1 function g: 2
"
# → 2

"
# (i.e., ∀𝑦, 𝑔/( 𝑦 = 2ℓ or 0)

• That is, we define 𝐶#- to be the matrix: 𝐶-# $,)
= 𝐶# 0($),)

for all 𝑖, 𝑗
• E.g., ℓ = 1

• Notice that 𝑅𝑎𝑛𝑘 𝜌′ = 𝑅𝑎𝑛𝑘 𝐶′!𝐶%!
$ = 𝑅𝑎𝑛𝑘 𝐶%! ≤ 2

,
3 &ℓ

• And so the entanglement entropy of new state 𝑆 𝜌′ ≤ (
#
− ℓ

• By Jensen’s inequality: 𝑆 𝜌- ≤ log rank 𝜌-
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Can we distinguish this reduction in rank?

• Recall, 𝐶′! is constructed by taking pseudorandom matrix 𝐶! and 
selecting repeated rows via a 2ℓ-to-1 function 𝑔
• Construction: g x = ℎ ℎ: 𝑥 𝑚𝑜𝑑 2

"
# ;ℓ where ℎ, ℎ:: 0,1 !/$ → 0,1 !/$ are 

pseudorandom permutations

• We prove that a distinguisher that can tell apart 𝐶′! from a uniformly 
random matrix can either distinguish 𝐶! from a truly random matrix OR g 
from a truly random function
• Neither can be done, as long as ℓ ≤ !

$
− log$ 𝑛

• Proof follows from quantum collision bound [Aaronson and Shi’2004][Zhandry’12]



What have we done?

• We’ve shown that 𝐶′! is a pseudorandom matrix
• But it has rank ≤ 2

"
# ;ℓ = log$ 𝑛 if ℓ = !

$
− log$ 𝑛

• Correspondingly, the state 𝜓!3 = ∑4,6 𝐶!3 4,6
𝑖 |𝑗⟩ is a PRS

• And the entanglement entropy  S(𝜌′) ≤ 1
/
− ℓ = 𝑂(log/ 𝑛)

• Very different from nearly maximal entanglement in quantum 𝑡-
designs!



Extension: PRS with “tunable” entanglement

• We can construct a PRS so that 𝑆 𝜌 = Θ(𝑘) for any log/ n ≤ 𝑘 ≤ 𝑛 whp
• Main technical hurdle: we need to lower bound how much entanglement 

we start with!
• i.e., we construct a particular PRF 𝑓: 0,1 ! → {±1} so that the corresponding state 
|𝜓"⟩ =

#
$"
∑% 𝑓 𝑥 |𝑥⟩ has	entanglement	𝑆 𝜌 = Θ(𝑛)

• Then we can use our previous idea with a 2ℓ-to-1 function, for suitable 
choice of ℓ, to give matching upper and lower bounds on entanglement



“Pseudoentanglement”

• Two ensembles of 𝑛-qubit quantum states {|𝜓)⟩} and {|Φ)⟩} indexed by a 
secret key 𝑘 ∈ 0,1 *+,-(() are (𝒇 𝒏 , 𝒈(𝒏)) −pseudoentangled if:

1. Given 𝑘, both |𝜓4⟩ and |Φ4⟩ are efficiently preparable by a quantum algorithm
2. If we aren’t given 𝑘 the ensembles are computationally indistinguishable
3. The entanglement entropy between the first 𝑛/2 and second 𝑛/2 qubits of {|𝜓4⟩}

is Θ 𝑓 𝑛 whp, whereas the entanglement entropy of {|Φ4⟩} is Θ(𝑔(𝑛))
• Prior work [Gheorghiu & Hoban’20]: Assuming LWE is secure against 

quantum attack, there are 𝒏, 𝒏 − 𝑶 𝟏 -pseudoentangled state 
ensembles
• Interestingly these ensembles are distinguishable from Haar

• Our result: Assuming any quantum secure cryptography is possible, we can 
construct states that are (𝒏, 𝒍𝒐𝒈𝟐(𝒏)) -pseudoentangled.
• Our ensembles are also computationally indistinguishable from Haar random states



Open questions
• Is it possible to create pseudoentanglement using holographic states in 

which AdS/CFT is well-defined?
• Is it possible to construct pseudorandom quantum states to have area law 

entanglement?
• So far, the low-entangled states we’ve constructed do not have a well-defined spatial 

geometry
• Do sufficiently deep random 2D spatially local quantum circuits give rise to 

pseudorandom states?
• i.e., suppose I give you 𝐶 05 )⊗7(5) , without telling you the description of the 

random circuit 𝐶
• Can you “feel” the difference between this and Haar random states?

• Applications of pseudoentanglement? 



Thanks!


