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Quantum entanglement is subtle!

* Quantum entanglement is fundamental for
guantum computation

e But there is still a lot we don’t understand

* This work: quantum entanglement “is not feelable”

* Will construct an ensemble of quantum states with low
entanglement which cannot be efficiently distinguished

from maximally entangled states even if given many (illustration of entanglement
copies from nobelprize.org)




Motivation 1: Entanglement, Geometry and
Complexity

Dictionary
Quantum Quantum
gravity in ﬁ mechanical
the AdS CFT

AdS/CFT [Maldacena ‘97] is a conjectured duality between quantum
gravity (the “bulk”) and a quantum mechanical system (the “boundary”)

* Major theme: Entanglement in the CFT = geometry in AdS (e.g., RT formula, ER=EPR...)

* Our result: Entanglement cannot be “felt” or efficiently observed

* If corresponding geometry is “feelable”, then the AdS/CFT dictionary must be hard to compute (in
spirit of [BFV’19][GH’20])



Motivation 2: random quantum states

* Random quantum states, drawn from the Haar measure, are an
important resource

e But they are of limited practicality from a computational point of view
* Basic counting arguments tell us we need exp(n) size circuits to
approximately prepare most states from |0™)
* To get over this, a central concept in quantum information has been
“pseudorandom” ensembles of efficiently preparable quantum states
which mimic properties of truly random quantum states



Information theoretic pseudorandomness

* A quantum 2-design is an ensemble of quantum states with the
property that no algorithm can distinguish 2 copies from truly random
states

* This notion is now a very central topic in qguantum information theory
with many important applications e.g., to
* randomized benchmarking
* quantum advantage experiments
* quantum gravity...



Computational pseudorandomness

* In computer science, we generally talk about the different notion of
computational pseudorandomness

* i.e., these are efficiently preparable quantum states that can’t be
distinguished from truly Haar random states by any efficient quantum
algorithm A given poly(n) copies

* This generally requires complexity assumptions

* Classically, this notion enables a wide variety of applications not known to be
possible in the information theoretic setting
* Public key cryptography
* Homomorphic encryption
* Derandomization



What is the relation between
pseudorandomness and entanglement?

* A typical Haar random quantum state is maximally entangled.
* Quantum t-designs are also close to maximally entangled (for any t = 2)

e Our result: Computational pseudorandom states do not need to be
extremely entangled!



Proof sketch



The Ji, Liu & Song construction [JLS'18][BS'19]

e Consider states of the form:

1
l/)fk> - ﬁzxe{m}n fre(x)]x)
* Where f;:{0,1}" — {+1} is any quantum secure pseudorandom function

* Main result [JLS’18] [BS’19]: {|1,bfk)} is a computational pseudorandom
state (i.e., a “PRS”) assuming quantum secure cryptography is possible.
1. Can efficiently prepare [, ) given key k

2. without knowledge of k, no efficient quantum algorithm can distinguish
polynomially many copies of [}, ) from copies of a Haar random state

* e, | l?cr[A (llpfk>®poly(n)) =1] - PF[A|¢)~Haar(|¢>®p0ly(n)) _ 1]|< 6



How entangled is the JLS construction?

* Lower bound [JLS"18]: Let p be RDM of [, ) wrt subsystem A on n/2
qubits, then S(p) = w(log(n)) whp

1
e Lemma: Tr[p?] < — for all constant ¢, whp

* Pf: If not, then the swap test on subsystem A of two copies of |1/Jfk) would

be an efficient distinguisher from a Haar random state
Tr|p?]

* This test succeeds with probability §+
* Lower bound on entanglement directly follows from Lemma

* Since S(p) = —log(Tr[p?]) by Jensen’s inequality
* We didn’t know of a PRS with entanglement saturating this lower bound...



How to make a low entanglement PRS

* Consider the JLS construction and divide the n qubits in half, denote the
subsystems A, B
° i.E-; |7~/)f> = ZiE{O,l}”/Z,jE{O,l}n/Z f(lr])|l>A |]>B
* |t will be convenient to think of this state as encoded by a “pseudorandom
matrix” Cr with (i, ) entry = f(i, )

Subsystem B
|
| !

n n n n
f(0z,0z) - f(02,12)
: : Subsystem A

r(12,02) - razin

Cf=

* It’s not hard to see that the RDM on subsystem 4, p = zl—anCfT



Our construction (informal)
+ Goal: Minimize S(p) = S (Zincf(:fT)

* Ildea: Pick a small subset of rows, and repeat those rows many times,
e.g.,

— f(Orz_l,O%) .. F(0Z,17)
f(Of,OZ_) f(07,12_) n o n n o n

Cs = — s CT: f(02,02) .. f(0Z,12)
F(12.02) - jazim F(0%08) .. f(0%18)

* Key point: C’f has reduced rank, so the new n qubit state
!/ 1 ! . . . . ! !/
|¢f) — ﬁZi,j Cf(l,])ll,]) has a RDM p’ so that S(p") < S(p)



Our construction (formal)

* How to select subset of repeated rows?
* Rows of C; selected via a 2¢-to-1 function g: lZz_] — [22_] (i.e., Vy,1g7*(y)| = 2¢ or 0)
* That is, we define C; to be the matrix: (C’f)i,j = (¢y)
e Eg,t=1

oy foralli,j

* Notice that Rank(p') = Rank(C’fC’]Z) = Rank(C’f) <2:7¢
* And so the entanglement entropy of new state S(p’) < 721— '4
* By Jensen’s inequality: S(p') < log(rank(p’))



Can we distinguish this reduction in rank?

* Recall, C’f is constructed by taking pseudorandom matrix Cr and
selecting repeated rows via a 2¢-to-1 function g

* Construction: g(x) = h (h’(x) mod 22__{)) where h, h':{0,1}"/? - {0,1}"/? are
pseudorandom permutations

* We prove that a distinguisher that can tell apart C’f from a uniformly
random matrix can either distinguish Cr from a truly random matrix OR g
from a truly random function

* Neither can be done, aslongas ¥ < ;—l— log2 n
* Proof follows from quantum collision bound [Aaronson and Shi’2004][Zhandry’12]



What have we done?

* We've shown that C’f is a pseudorandom matrix
« Butithasrank < 2z ¥ = log2nif £ = 721— log? n

* Correspondingly, the state |1,b}) = Zi,j(C]i)iin)U) is a PRS

* And the entanglement entropy S(p’) < 721— ¢ = 0(log? n)

 Very different from nearly maximal entanglement in quantum ¢-
designs!



Extension: PRS with “tunable” entanglement

* We can construct a PRS so that S(p) = O(k) for any log?(n) < k < n whp

* Main technical hurdle: we need to lower bound how much entanglement
we start with!

* i.e., we construct a particular PRF f: {0,1}" — {%1} so that the corresponding state
[Yr) = \/%fo(x)pc) has entanglement S(p) = 0(n)

 Then we can use our previous idea with a 2¢-to-1 function, for suitable
choice of £, to give matching upper and lower bounds on entanglement



“Pseudoentanglement”

* Two ensembles of n-qubit quantum states {|yY; )} and {|®, )} indexed by a
secret key k € {0,1}P°%Y ™ are (f(n), g(n)) —pseudoentangled if:
1. Given k, both |1 ) and |®,,) are efficiently preparable by a quantum algorithm
2. If we aren’t given k the ensembles are computationally indistinguishable

3. The entanglement entropy between the first n/2 and second /2 qubits of {|)}
is G)(f(n)) whp, whereas the entanglement entropy of {|®, )} is O(g(n))

* Prior work [Gheorghiu & Hoban’20]: Assuming LWE is secure against

quantum attack, there are (n,n — 0(1))-pseudoentang|ed state
ensembles

* Interestingly these ensembles are distinguishable from Haar

e Our result: Assuming any quantum secure cryptography is possible, we can
construct states that are (n, log?(n)) -pseudoentangled.

* Our ensembles are also computationally indistinguishable from Haar random states



Open questions

* |s it possible to create pseudoentanglement using holographic states in
which AdS/CFT is well-defined?

* |s it possible to construct pseudorandom quantum states to have area law
entanglement?

* So far, the low-entangled states we’ve constructed do not have a well-defined spatial
geometry

* Do sufficiently deep random 2D spatially local quantum circuits give rise to
pseudorandom states?

* i.e., suppose | give you (C|0n))®p(n) , without telling you the description of the
random circuit C

* Can you “feel” the difference between this and Haar random states?
* Applications of pseudoentanglement?



Thanks!



