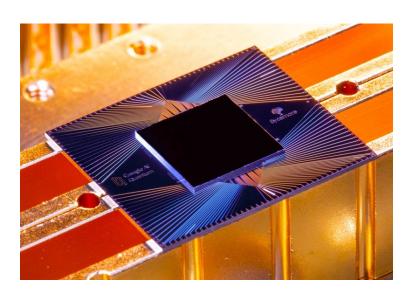
On the theory of near-term quantum advantage

Bill Fefferman
(University of Chicago)

The first "Quantum advantage" claims have now been made...



Random Circuit Sampling (Google "Sycamore") in late 2019, USTC in 2021...

Gaussian BosonSampling – e.g., USTC "Jiuzhang" in late 2020, Xanadu's "Borealis" in 2022...

This talk: the latest complexity theoretic arguments & classical algorithms to understand the power of these "random quantum circuit" experiments

Importance of experimental quantum advantage: foundations of computation

- Experimental violation of the Extended Church-Turing thesis
 - i.e., If we want to model efficient computation, we must consider quantum mechanics!
- Complements theoretical evidence given by earlier speedups (e.g., [Bernstein-Vazirani '93][Simon'94][Shor '94])

Importance of experimental quantum advantage: validating quantum physics

- Exponential growth one of the most counter-intuitive aspect of quantum mechanics.
 - Is the exponential description of a quantum state really necessary?
- New limit in which to test physics: high complexity.
- *Difficulty*: how to verify something that's exponentially complex?

What is the *ideal* goal of quantum advantage?

- Find a problem:
- 1. Can be solved efficiently using a near-term quantum experiment
- 2. Is classically hard to solve can't be solved in polynomial time with a classical computer as the system size scales
- 3. Solution can be efficiently verified with a classical computer with minimal trust in the experiment

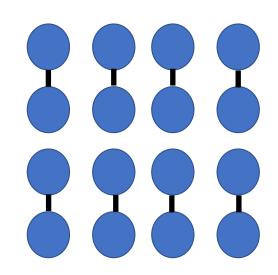
What is the *current* goal of quantum advantage?

- Current quantum advantage experiments solve "sampling problems" in which the goal is to sample from a complicated distribution
- We have rigorous evidence that these problems cannot be solved classically in polynomial time
- But current experiments are not scalable!
 - 1. Require exponential time to verify
 - 2. Uncorrected noise gets worse as system size grows
- So hope is to find a "Goldilocks" system size:
 - Large enough to be classically challenging to simulate
 - Not too large! Otherwise effects of noise overwhelm and the experiment can't be verified
- There is optimism that current experiments have reached this size, but classical simulation algorithms continually improve, as do quantum experiments.
- Much is still unknown!!!!

Goldilocks and the three bears

Google's RCS proposal [Boixo et. al. 2017]

- Generate a quantum circuit C on n qubits on a 2D lattice, with d layers of (Haar) random nearestneighbor gates
 - In practice use a discrete approximation to the Haar random distribution
- Start with $|0^n\rangle$ input state, apply random quantum circuit and measure all qubits in computational basis
- Has now been implemented with n=53 qubits and d=20 by Google in 2019 & by USTC in 2021 with 60 qubits and depth 24
- This will be the focus of today's talk!



(single layer of Haar random two qubit gates applied on 2D grid of qubits)

Boson Sampling [Aaronson & Arkhipov '11]

- Prepare n photon $m \ge n^2$ -mode "Fock" state
 - i.e., n identical single photons in the first of m modes
- Evolve under a Haar random linear optical unitary composed of beamsplitters and phaseshifters
- Take photon number resolving measurements in each mode
- Recent experiments use similar idea with Gaussian input states, rather than Fock states – called "Gaussian BosonSampling"
 - Implemented with 144 modes and as many as 113 detected photons by USTC '21
 - Implemented with as 216 modes and as many as 219 photons by Xanadu '22

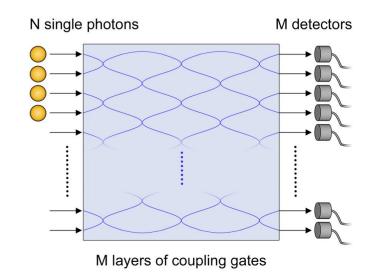


Photo credit: R. Garcia-Patron, J. Renema and V. Shchesnovich

Agenda

- 1. Hardness argument 1 (hardness of quantum sampling)
- 2. Hardness argument 2 (hardness of benchmarks)
- 3. Easiness argument 1 (classical algorithm for the "XQUATH" benchmark)
- **4. Easiness argument 2** (classical algorithms taking advantage of uncorrected noise)

2. Hardness argument 1 (hardness of quantum sampling)

What do we mean by quantum sampling?

- Current quantum advantage experiments sample from the output distribution of a quantum circuit
 - i.e., on input C the experiment runs $C|0^n\rangle$ and measures all n qubits in computational basis to get a sample $y\in\{0,1\}^n$
- **Definition:** Let the "output probability" $p_y(C) = |\langle y|C|0^n\rangle|^2$
- First goal: prove impossibility of an efficient classical sampler algorithm S that samples from the same distribution:
 - for all C, y we have $\Pr_{\mathbf{r}}[S(C,r)=y]=p_y(C)$

Staring point: on "classical" vs "quantum" sum

- Consider two problems:
 - "Classical" sum: Given classical circuit computing $f:\{0,1\}^n \to \{0,1\}$ compute $\sum_{x\in\{0,1\}^n} f(x)$
 - "Quantum" sum: Given classical circuit computing $g:\{0,1\}^n \to \{\pm 1\}$ compute $\sum_{x\in\{0,1\}^n}g(x)$
- Both are #P-hard to exactly compute, since they are at least as hard as counting the number of satisfying assignments to a Boolean formula

On classical approximate sum

- Classical "approximate sum": Given $f: \{0,1\}^n \to \{0,1\}$ output multiplicative estimate α so that:
 - $(1 \epsilon) \sum_{x \in \{0,1\}^n} f(x) \le \alpha \le (1 + \epsilon) \sum_{x \in \{0,1\}^n} f(x)$
- Stockmeyer's algorithm: classical approximate sum can be solved in classical $poly\left(n,\frac{1}{\epsilon}\right)$ time with an NP oracle [Stockmeyer'85]
 - In particular, it's strictly easier than exact case, unless PH collapses
- Consequence: If a classical sampler S exists, then outputting a multiplicative estimate of probability for any outcome y is strictly easier than #P
 - Because output probability is a classical sum problem!
 - i.e., define f(r)=1 if S(C,r)=y and otherwise 0
 - Then $\Pr_r[S(C,r)=y]=\frac{1}{2^{|r|}}\sum_r f(r)$

On quantum approximate sum

- Quantum "approximate sum": Given g: $\{0,1\}^n \to \{\pm 1\}$ output multiplicative estimate α so that:
 - $(1 \epsilon) \sum_{x \in \{0,1\}^n} g(x) \le \alpha \le (1 + \epsilon) \sum_{x \in \{0,1\}^n} g(x)$
- Claim: Unlike the classical problem this is as hard as computing $\sum_x g(x)$ exactly!
- Intuition: Exponential size cancellations ("interference") make this problem much harder than classical approximate sum!
- Pf sketch: "binary search and padding"
 - Claim: even computing sign($\sum_{x} g(x)$) is #P-hard (and is a strictly easier problem!)
 - 1. "Padding": By adding dummy variables can compute g' so that $\sum_{x'} g'(x') = \sum_{x} g(x) k$
 - 2. Then compute sign i.e., is $(\sum_{x'} g'(x)) > 0$?
 - Then we know if $\sum_{x} g(x) > k$
 - 3. Then binary search on k and repeat!
- Exercise: Similar argument proves it's #P-hard to estimate $(\sum_{\mathbf{x}} g(\mathbf{x}))^2$
 - i.e., can run the same binary search & padding argument on $|\sum_x g(x)|$

Consequence: estimating output probabilities of quantum circuits is **#P**-hard

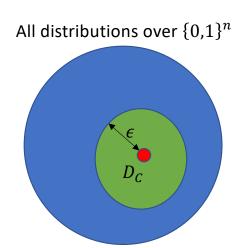
- Claim: given quantum circuit C estimating $p_{0^n}(C)$ is as hard as squared quantum approximate sum.
- Pf: By "quantum Fourier sampling"
 - Given $g: \{0,1\}^n \to \{\pm 1\}$ consider the quantum circuit C that:
 - Prepares the state $|g\rangle = \sum_x g(x)|x\rangle$ then takes the Hadamard of each qubit
 - Notice that $p_{0^n}(C)=\left|\left<0^n\left|H^{\otimes n}\left|g\right>\right|^2=\frac{(\sum_x g(x))^2}{2^{2n}}\right|$
 - So multiplicative estimation of $p_{0^n}(C)$ is #P-hard

Impossibility of exact sampling

- Assume, for contradiction, there is an efficient sampler S:
 - This means for any quantum circuit *C*:
 - $\Pr_{\mathbf{r}}[S(C, \mathbf{r}) = y] = |\langle y|C|0^n \rangle|^2 = p_y(C)$
- We know that estimating the probability S outputs $0^n=p_{0^n}$, is strictly easier than **#P** unless **PH** collapses
- But we also know that estimating $p_{0^n}(\mathcal{C})$ is **#P**-hard, since it is as hard as **squared quantum approximate sum**
- This is a contradiction! So there can't be such a sampler algorithm.
- Similar arguments appear in [Terhal-DiVincenzo '04, Bremner-Jozsa-Shepherd '11, Aaronson-Arkhipov '11...]

This result is not robust

- The impossibility result has two major weaknesses:
 - **1. Exactness assumption:** It requires that the classical algorithm samples *exactly* from the output distribution of each quantum circuit
 - **2. Worst-case assumption:** It requires that the classical algorithm works *for all* quantum circuits
- Major goal in the theory of quantum advantage: prove impossibility of approximate average-case sampler
 - i.e., efficient classical algorithm S(C,r) that samples from any distribution $|X-D_C|_{TV} \leq \epsilon$ whp over C
- **Note:** constant approximation in TVD is not intended to model *physical noise* but rather *classical imprecision*!

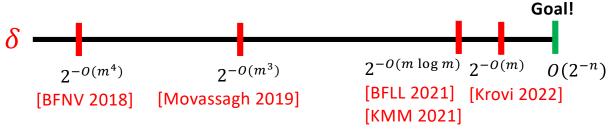


Proving hardness of approximate sampling

• Central problem of study: δ-random circuit estimation:

Given as input quantum circuit C, output ${\bf q}$ so that $|{\bf q}-p_{0^n}({\cal C})|\leq {\bf \delta}$ with probability 2/3 over C

- To prove hardness of average-case approximate sampling suffices to prove $\delta = O(2^{-n})$ random circuit estimation is #P-hard
- Known hardness results with respect to C on n qubits, size $m = O(n \cdot d)$



• Boson Sampling: goal is $\frac{1}{e^{n \log n}}$, whereas we have hardness at $\frac{1}{e^{6n \log n}}$ [BFLL'21]

Inspiration: average-case hardness of Permanent [Lipton '91]

- **Permanent** of $n \times n$ matrix is **#P**-hard in the worst-case [Valiant '79]
 - $Per[X] = \sum_{\sigma \in S_n} \prod_{i=1}^n X_{i,\sigma(i)}$
- Algebraic property: Per[X] is a degree n polynomial with n^2 variables
- Need compute Per[X] of worst-case matrix X
 - But we only have access to algorithm O that correctly computes most permanents over \mathbb{F}_p i.e., $\Pr_{Y \in_R \mathbb{F}_n^n \times n} \left[O(Y) = Per[Y] \right] \geq 1 \frac{1}{poly(n)}$

• i.e.,
$$\Pr_{Y \in_R \mathbb{F}_p^n \times n} [O(Y) = Per[Y]] \ge 1 - \frac{1}{poly(n)}$$

- Choose n+1 fixed non-zero points $t_1, t_2 \dots, t_{n+1} \in \mathbb{F}_p$ and uniformly random matrix R
- Consider line A(t) = X + tR
 - Observation 1 "scrambling property": for each i, $A(t_i)$ is a random matrix over $\mathbb{F}_p^{n \times n}$
 - Observation 2: "univariate polynomial": Per[A(t)] is a degree n polynomial in t
- But now these n+1 points uniquely define the polynomial, so use polynomial extrapolation to evaluate Per[A(0)]=Per[X]

[BFNV'18]: Hardness for Random Quantum Circuits

- Algebraic property: much like Per[X], output probability of random quantum circuits has polynomial structure
 - Consider circuit $C = C_m C_{m-1} \dots C_1$
 - Polynomial structure comes from path integral:
 - $\langle 0^n | C | 0^n \rangle = \sum_{y_2, y_3, \dots, y_m \in \{0,1\}^n} \langle 0^n | C_m | y_m \rangle \langle y_m | C_{m-1} | y_{m-1} \rangle \dots \langle y_2 | C_1 | 0^n \rangle$
- ullet This is a polynomial of degree m in the gate entries of the circuit
- So the output probability $p_{0^n}(C)$ is a polynomial of degree 2m

First attempt at adapting Lipton's proof

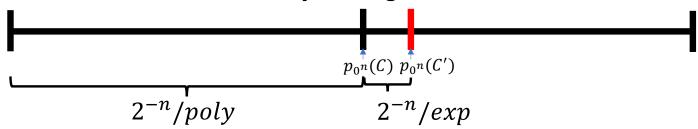
- Fix m Haar random two qubit gates $\{H_i\}_{i\in[m]}$
- **Main idea**: Implement tiny fraction of H_i^{-1}
 - i.e., $C'_i = C_i H_i e^{-ih_i \theta}$
 - This scrambles C if $\theta \approx small$, since each gate is close to Haar random
 - However, if $\theta = 1$ the corresponding circuit C' = C
- Strategy (in style of Lipton): take several non-zero but small θ , compute output probabilities of "random but correlated" circuits $C'_{\theta_1}, C'_{\theta_2} \dots, C'_{\theta_{2m}}$ and apply polynomial extrapolation, evaluate at $\theta = 1$ to retrieve $p_{0^n}(C)$

This is not quite the "right way" to scramble!

- **Problem:** $e^{-ih_i\theta}$ is not polynomial in θ
- **Solution:** take fixed truncation of Taylor series for $e^{-ih_i\theta}$
 - i.e., each gate of C'_{θ} is $C_i H_i \sum_{k=0}^K \frac{(-ih_i\theta)^k}{k!}$
 - So each gate entry is a polynomial in θ and so is $p_{0^n}(C'_{\theta})$
 - Now extrapolate and compute $p(1) = p_{0^n}(C)$

How to motivate the truncations?

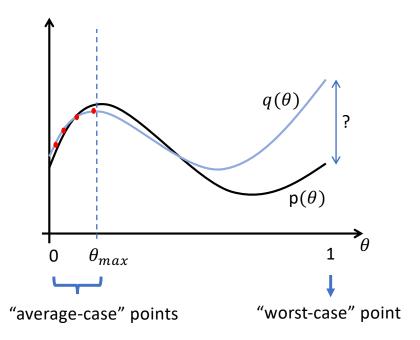
- Main technical result in [BFNV'18]: *Estimating* $p_{0^n}(\mathcal{C}')$ is hard iff estimating $p_{0^n}(\mathcal{C})$ is hard
 - Intuitively, because the "truncation error" is so much smaller than the size of the additive error we are conjecturing is hard.



 More recently, [Movassagh'19'20] has shown a related argument (using the so called "Cayley path") that eliminates the need for these truncations

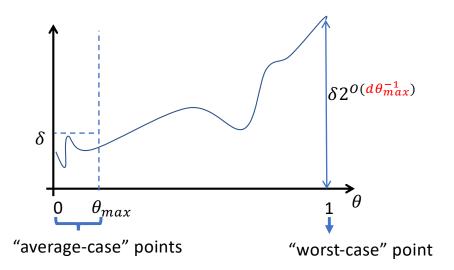
On robustness to imprecision

- So far we assumed the ability to compute the output probabilities of random circuits $\{p_{0}^{n}(C'_{\theta_{i}})\}$ exactly
- Actual setting: Given 2m evaluation points $\{(\theta_i, y_i)\}$ so that for all i, $|y_i p_{0^n}(C'_{\theta_i})| \leq \delta$
- We have two polynomials:
 - The "ideal" $p(\theta_i) = p_{0^n}(C'_{\theta_i})$
 - The extrapolated polynomial $q(\theta_i) = y_i$
- Our question: How close is q(1) to $p(1) = p_{0^n}(C)$ in terms of δ , θ_{max} ?



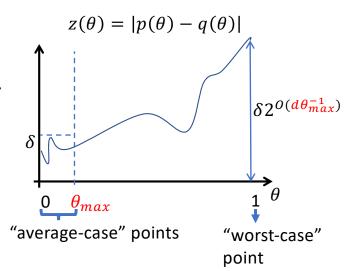
The "Paturi picture"

- [Paturi '92] If we have a degree d polynomial $z(\theta)$ bounded on an interval $[0, \theta_{max}]$ by δ then $|z(1)| \leq \delta 2^{O(d\theta_{max}^{-1})}$
- Our case: Consider the degree 2m polynomial $z(\theta) = |p(\theta) q(\theta)|$



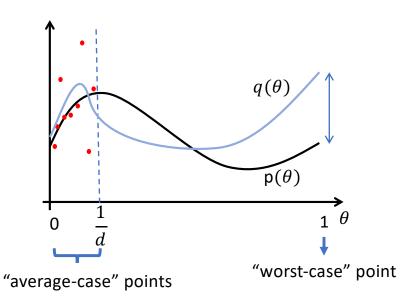
How large can we take θ_{max} ?

- Lagrange extrapolation requires getting all d=2m points correct
 - So we need the algorithm to succeed wp $\geq 1 O\left(\frac{1}{m}\right)$
- As θ gets larger C'_{θ} is further away from random circuit
 - i.e., Distribution of C_{θ}' is $O(m\theta)$ -close in TVD from Haar random circuit
 - So algorithm works wp $1 O(m\theta)$ on these points
- So need $\theta_{max} \le \frac{1}{o(m^2)}$
- Plugging in Paturi's bound: $z(1) \le \delta 2^{O\left(d\theta_{max}^{-1}\right)} = \delta 2^{O(m^3)}$
- So need $\delta = \frac{1}{2^{O(m^3)}}$



Increasing robustness [BFLL'21] (see also [Kondo et. al.'21])

- To improve imprecision we need a new, error-robust means of polynomial extrapolation
- Will do this by oversampling i.e., taking many more points than degree
- "Robust Berlekamp-Welch" Thm. Given $O(d^2)$ "faulty" evaluation points $\{(\theta_i, y_i)\}$ to $p(\theta)$ of degree d so that:
 - 1. $\theta_i \in \left[0, \frac{1}{d}\right]$
 - 2. We know **at least** 2/3 of y_i are δ -close to $p(\theta_i)$
- Then any polynomial $q(\theta)$ which is δ -close on 2/3 fraction of the points is $\delta 2^{O(d)}$ -close to $p(\theta)$ for all $\theta \in \left[0, \frac{1}{d}\right]$



How large can we take θ_{max} now?

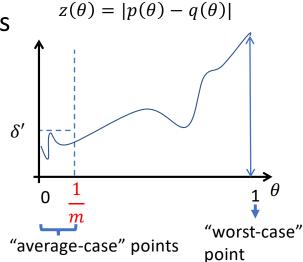
• Input: faulty points to polynomial $p(\theta)$:

$$(\theta_1, y_1), (\theta_2, y_2) \dots (\theta_{O(m^2)}, y_{O(m^2)})$$

- Ask NP oracle to give us a polynomial $q(\theta)$ that is δ -close to 2/3 of these points
 - This can easily be checked by evaluating q at each θ_i
- Robust Berlekamp-Welch theorem tells us:

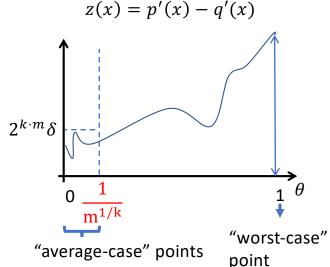
•
$$|p(\theta) - q(\theta)| \le \delta' = \delta 2^{O(m)}$$
 for all $\theta \in \left[0, \frac{1}{m}\right]$

- Then Paturi tells us:
 - $|p(1) q(1)| = |z(1)| \le \delta' 2^{O(d\theta_{max}^{-1})} = \delta 2^{O(m^2)}$
 - So we need to take $\delta \sim \frac{1}{2^{O(m^2)}}$



Getting to robustness $2^{-O(m \log m)}$

- Given faulty points (θ_1, y_1) , (θ_2, y_2) ... $(\theta_{O(m^2)}, y_{O(m^2)})$ with $\theta_i \in [0, \frac{1}{m}]$
- Trick! Rather than asking the **NP** oracle for the approximating polynomial $q(\theta)$ of degree m, replace the variable θ with x^k for some large k and ask for this poly q'(x)
 - This rescaling *increases* the degree to km!
 - But it "stretches" unit interval near 0 and "compresses" near 1
 - So for fixed value of $\theta_{max} = \frac{1}{m}$ the corresponding value of x_{max} has increased, it's now $\frac{1}{m^{1/k}}$
- Plugging in Paturi's bound: $z(1) \le \delta' 2^{O(km \cdot m^{1/k})}$
- Setting $k = \log(m)$ we have $z(1) \le \delta 2^{O(m \cdot \log(m))}$
- So we need to set $\delta \sim 2^{-O(m \cdot log(m))}$



Comments & Open Directions

- Main open question in the theory of quantum advantage: *improve* the *additive imprecision* of these average-case hardness results to $O(2^{-n})$ from $2^{-O(m)}$ for RCS or $\frac{1}{e^{n \log n}}$ from $\frac{1}{e^{6n \log n}}$ for Boson Sampling
- Current hardness results have improved dramatically but we've also discovered *barriers* implying that new techniques will be needed to improve them further (e.g., [AA'2011][Napp et. al. '19][BFLL'21])

3. Hardness argument 2 (hardness of benchmarks)

Limitations of total variation distance

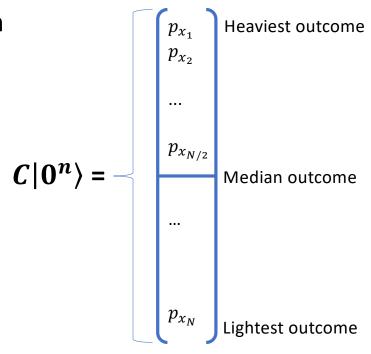
- Total variation distance is difficult to measure!
 - There are well-known exponential lower bounds for sample complexity, even for "merely" testing closeness to the uniform distribution e.g., [Valiant & Valiant'17]
- Closeness in total variation distance is not a reasonable model of uncorrected physical noise
 - i.e., system size increases, having TVD remain a small constant isn't realistic without error mitigation
- Is there a "quantum signal" that is easier to verify and implement?

Candidates for verifiable "quantum signals"

- Many candidates rely on the "Porter-Thomas property" of random quantum circuits
 - Each output probability is exponentially distributed
 - i.e., $\Pr_C\left[|\langle x|C|0^n\rangle|^2 = \frac{q}{2^n}\right] \sim e^{-q}$
 - True for Haar random unitaries
 - Conjectured to be true even for shallow depth random circuits
- This Porter-Thomas property implies that the output distribution of a random but fixed circuit is somewhat "flat" but not uniform whp
- **Observation:** Easy to sample from the output distribution with a quantum computer and observe many "heavy" outcomes how difficult is this to do classically?

Heavy Output Generation [Aaronson & Chen '17]

- **Definition:** With respect to a circuit C call an outcome $x \in \{0,1\}^n$ heavy if p_x is greater than median in the output distribution of C
- **HOG**: Given random circuit C output strings $x_1, x_2, ..., x_k$ so that at least 2/3 are heavy
- Claim: Quantumly can solve HOG simply by repeatedly running $C|0^n\rangle$ and measuring
 - Why? Because whp over C, the sum of probabilities that are above median in output distribution is > 0.7
 - Using Porter-Thomas property!
 - Then use Chernoff bound to prove 2/3 of outputs are heavy whp



Quantum Threshold Assumption (QUATH)

- **HOG** still seems like a sampling task why should this be hard classically?
- [Aaronson and Chen'17]: HOG is classically hard assuming QUATH
- QUATH: No efficient classical algorithm takes input random C with $m\gg n$ gates and decides if p_{0}^{n} is heavy with probability $\frac{1}{2}+\Omega\left(\frac{1}{2^{n}}\right)$
 - Where probability is over both C and internal randomness of classical algorithm
- Motivation: QUATH seems closer to problems we understand, since it involves estimation of $p_{0}^{\,n}$
- ullet Key point is that the bias scales exponentially in n rather than size m
 - Not hard to show classical algorithm with a bias that scales exponentially in m
 - e.g., randomly guessing a small number of Feynman paths and comparing to a threshold

QUATH implies HOG is hard

- **Pf.** (Intuition): By contrapositive assume there's an algorithm for HOG. We want to solve QUATH.
 - On input C use HOG algorithm to output list of mostly heavy strings in output distribution of C
 - Output "heavy" if 0ⁿ is on the list.

• Pf. (More formal analysis):

- Easier to consider a uniform outcome $z \in \{0,1\}^n$ rather than the 0^n outcome
 - But it doesn't matter by a property of random circuits called "hiding"
 - i.e., Let C' be the circuit chosen by taking C and appending Pauli X gates to each i-th qubit if $z_i = 1$
 - Notice that new circuit, C', has property that $p_{0^n}=|\langle 0^n|C|0^n\rangle|^2=|\langle z|C'|0^n\rangle|^2$ and C' is still random circuit
- Strategy is same as the intuition: use **HOG** algorithm on C' to output list z_1, \ldots, z_k so that 2/3 of z_i are heavy, then choose uniform element of list, call it z_{i^*}
 - If $z = z_{i*}$ output "heavy"
 - If $z \neq z_{i^*}$ output "heavy" wp $\frac{1}{2}$, "light" wp $\frac{1}{2}$
- The probability this algorithm is correct on heaviness of $p_{0}^{n}(C)$ is at least:

•
$$\Pr[z_{i^*} = z] \cdot \frac{2}{3} + \Pr[z_{i^*} \neq z] \cdot \frac{1}{2} = \frac{1}{2^n} \cdot \frac{2}{3} + (1 - 2^{-n}) \cdot \frac{1}{2} = \frac{1}{2} + \Omega\left(\frac{1}{2^n}\right)$$

Linear Cross-Entropy (**XEB**) [Boixo et. al. '16] [Arute et. al. '19]

- An alternative measure of heaviness is XEB:
 - **XEB** $\left(p_{exp}, p_{ideal}\right) = 2^n \sum_{x} \left(p_{exp}(x) p_{ideal}(x)\right) = 2^n E_{x \sim p_{exp}(x)}[p_{ideal}(x)]$
 - If $p_{exp} = p_{ideal}$ then $\mathbf{XEB}(p_{exp}, p_{ideal}) = 2$ but $\mathbf{XEB}(U, p_{ideal}) = 1$
- XEB can be well-approximated in few device samples via concentration of measure arguments, but requires exponential time to compute ideal output probabilities of observed samples
 - i.e., observe experimental outcomes $z_1, ..., z_k$ and compute $\frac{2^n \sum_i p_{ideal}(z_i)}{k}$

Why is scoring well on **XEB** classically hard? [Aaronson & Gunn '19]

- XHOG ("Linear Cross Entropy Heavy Output Generation")
 - Given C, output k distinct samples $z_1, z_2, ..., z_k$ so that $E_i[|\langle z_i|C|0^n\rangle|^2] \geq \frac{b}{2^n}$
 - Where $b = 1 + \epsilon$
- By repeatedly running a *noiseless* circuit we'd be able to achieve $m{b}=2$
- Noise can cause the experiment to have considerably different values for b
 - ullet E.g., Google scores b=1.002 on its 53 qubit RCS experiment
- Still seems like a sampling task why should this be hard classically?

The XQUATH assumption [Aaronson & Gunn '19]

- XHOG is hard assuming XQUATH
- **XQUATH**: No efficient classical algorithm, given random C, produces estimate, p, to $p_{0^n} = |\langle 0^n | C | 0^n \rangle|^2$ so that:

•
$$2^{2n} \left(E_C \left[\left(p_{0^n} - \frac{1}{2^n} \right)^2 \right] - E_C \left[(p_{0^n} - p)^2 \right] \right) = \Omega(2^{-n})$$

- i.e., No classical algorithm can achieve a **mean squared error** at estimating an output probability of a random circuit, that's slightly better than the trivial algorithm that always outputs 2^{-n}
- XQUATH implies XHOG is hard by very similar reduction!
 - i.e., assume there's an **XHOG** algorithm that outputs samples z_1, z_2, \ldots, z_k so that $E_i[p_{z_i}] = \frac{b}{2^n}$ then output $\frac{b}{2^n}$ if 0^n is on the list and else output $\frac{1}{2^n}$

Comments & Open Directions

- This is a very "lossy" reduction! Even scoring well (e.g., constant b > 1) on **XHOG** gives rise to $\exp(-n)$ bias for **XQUATH**. Can this be improved?
- Under certain assumptions about the noise, the **XEB** score well-approximates the fidelity of the noisy experiment. Hence it can be useful for benchmarking (see e.g., [Boixo et. al. '17] and our work [Liu et. al. '21] for more details).

4. Easiness argument 1 (XQUATH is false at sublinear depth) [Gao et. al. '21][Aharonov et. al. '22]

Revisiting the intuition for XQUATH

• Recall **XQUATH**: No efficient classical algorithm, given random C, produces estimate, p, to $p_{0^n} = |\langle 0^n | C | 0^n \rangle|^2$ so that:

• XScore =
$$2^{2n} \left(E_C \left[\left(p_{0^n} - \frac{1}{2^n} \right)^2 \right] - E_C \left[(p_{0^n} - p)^2 \right] \right) = \Omega(2^{-n})$$

- Intuition is that the best algorithm for estimating p_0 for a random circuit $C=C_mC_{m-1}\dots C_1$ is to sample the path integral in the computational basis:
 - $p_{0^n} = \left(\sum_{y_2, y_3, \dots, y_m \in \{0,1\}^n} \langle 0^n | C_m | y_m \rangle \langle y_m | C_{m-1} | y_{m-1} \rangle \dots \langle y_2 | C_1 | 0^n \rangle \right)^2$
 - There are $\exp(n\cdot d)$ paths with uniform value, so it's unclear how to achieve an advantage that scales as 2^{-n}
- Observation: Turns out this isn't true! If we consider the path integral in the Pauli basis the values of the paths are highly non-uniform!

Pauli path integrals

- Rather than thinking of quantum circuit as applying unitary gates to vectors, think about it as applying unitary channels to density matrices
- Denote the normalized Pauli operators $P_n = \left\{\frac{I}{\sqrt{2}}, \frac{X}{\sqrt{2}}, \frac{Y}{\sqrt{2}}, \frac{Z}{\sqrt{2}}\right\}^{\bigotimes n}$
- Can write an n-qubit density matrix $\rho = \sum_{t \in P_n} \alpha_t \cdot t$ with $\alpha_t = Tr[t\rho]$
- Recall in the "computational basis" path integral we express:
 - $\langle x|U|\psi\rangle = \sum_{y\in\{0,1\}^n} \langle x|U|y\rangle\langle y|\psi\rangle$
- Analogously, in Pauli basis $Tr[sU\rho U^{\dagger}] = \sum_{t \in P_n} Tr[sUtU^{\dagger}]Tr[t\rho]$
 - We call $Tr[sUtU^{\dagger}]$ the "transition amplitude"

Expressing p_{χ} as a Pauli path integral

- Now we can express any output probability as a Pauli path integral, in analogy to what we are accustomed to in the computational basis
- Let $C = C_d C_{d-1} \dots C_1$ where each layer C_i acts on n qubits
- $p_x = |\langle x | C | 0^n \rangle|^2$
- = $\sum_{s \in P_n^{d+1}} \operatorname{Tr}(|x\rangle\langle x|s_d) \operatorname{Tr}(s_d C_d s_{d-1} C_d^{\dagger}) \dots \operatorname{Tr}(s_1 C_1 s_0 C_1^{\dagger}) \operatorname{Tr}(s_0 |0^n\rangle\langle 0^n|)$
- = $\sum_{s \in P_n^{d+1}} f(C, s, x)$ (we define f(C, s, x) as the "value" of path s)

Two important facts

- The **XQUATH** algorithm relies on two facts which both follow from elementary properties of Haar random gates
- Fact 1 (e.g., [HL'09]) Let U be a Haar random 2 qubit gate and $p, q \in P_2$,

• Then
$$E_U\left[\mathrm{Tr}\left[pUqU^\dagger\right]^2\right] = \begin{cases} 1, & if \ p = q = \frac{I^{\bigotimes 2}}{2} \\ 0, & if \ p = \frac{I^{\bigotimes 2}}{2} \ and \ q \neq \frac{I^{\bigotimes 2}}{2} \\ 0, & if \ p \neq \frac{I^{\bigotimes 2}}{2} \ and \ q = \frac{I^{\bigotimes 2}}{2} \\ \frac{1}{15}, & otherwise \end{cases}$$

- Fact 2 ("orthogonality of Pauli paths") Let C be a random circuit (with Haar gates) and $s \neq s' \in P_n^{d+1}$ be any two different paths and any $x \in \{0,1\}^n$
 - Then $E_C[f(C, s, x)f(C, s', x)] = 0$
 - Corollary: for any path $s \neq I_n^{\otimes d+1}$, $E_c[f(C, s, x)] = 0$
 - since the $I_n^{\otimes d+1}$ path has value $\frac{1}{2^n}$ so $E_C[f(C,s,x)f(C,I_n^{\otimes d+1},x)] = \frac{1}{2^n}E[f(C,s,x)] = 0$

XQUATH algorithm (part 1)

- Claim: Given a random circuit C outputting $p = \frac{1}{2^n} + f(C, s^*, 0^n)$ achieves XScore of $\left(\frac{1}{15}\right)^d$ where $s^* = \left(\frac{1}{\sqrt{2^n}}Z \otimes I^{\otimes n-1}\right)^{\otimes d+1}$
- Recall: $XScore = 2^{2n} \left(E_C \left[\left(p_{0^n} \frac{1}{2^n} \right)^2 \right] E_C [(p_{0^n} p)^2] \right)$
- Proof: $XScore = 2^{2n}E_C\left[\frac{1}{2^{2n}} \frac{2}{2^n}p_{0^n} p^2 + 2p \cdot p_{0^n}\right]$ (by algebra)
 - = $2^{2n}E_C[-\frac{1}{2^{2n}}-p^2+2p\cdot p_{0^n}]$ (using that $E_C[p_{0^n}]=\frac{1}{2^n}$)
 - = $2^{2n}E_C[-\frac{2}{2^{2n}}-f(C,s^*,0^n)^2+2p\cdot p_{0^n}]$ (by def. of p & by cor. Fact 2 cross terms = 0)
 - = $2^{2n}E_C[-\frac{2}{2^{2n}}-f(C,s^*,0^n)^2+\frac{2p_0n}{2^n}+2f(C,s^*,0^n)p_0n]$ (by def. of p)
 - = $2^{2n}E_C[-f(C,s^*,0^n)^2 + 2f(C,s^*,0^n)^2]$ (using that $E_C[p_{0^n}] = \frac{1}{2^n}$ & orthogonality)
 - = $2^{2n}E_C[f(C, s^*, 0^n)^2]$ (by algebra)

XQUATH algorithm (part 2)

- Recall $C=C_dC_{d-1}\dots C_1$ and the path $s^*=\left(\frac{1}{\sqrt{2^n}}Z\otimes I^{\otimes n-1}\right)^{\otimes d+1}$ where each layer C_i consists of two qubit gates $C_i^{(1)},C_i^{(2)},\dots,C_i^{(n/2)}$
- So far we have: $XScore = 2^{2n}E_C[f(C, s^*, 0^n)^2]$
 - = $2^{2n} E_C \left[\text{Tr}(|x\rangle\langle x|s_d^*)^2 \cdot \text{Tr}(s_d^* C_d s_{d-1}^* C_d^{\dagger})^2 \cdot \dots \cdot \text{Tr}(s_1^* C_1 s_0 C_1^{\dagger})^2 \cdot \text{Tr}(s_0^* |0^n\rangle\langle 0^n)^2 \right]$
 - First and the last terms are $\left(\frac{1}{\sqrt{2n}}\right)^2$ which cancels the 2^{2n} term in front
 - ullet = Product of d squared transition amplitudes each of the form:
 - = $E_{C_i} \left[Tr \left[\left(Z \otimes I^{\otimes n-1} \right) C_i \left(Z \otimes I^{\otimes n-1} \right) C_i^{\dagger} \right]^2 \right]$ (using that each $s_i^* = (Z \otimes I^{\otimes n-1})$)
 - = $E_{C_i^{(1)}} \left[Tr \left[(Z \otimes I) C_i^{(1)} (Z \otimes I) C_i^{(1)\dagger} \right]^2 \right] \cdot E_{C_i^{(2)}} \left[Tr \left[(I \otimes I) C_i^{(2)} (I \otimes I) C_i^{(2)\dagger} \right]^2 \right] \cdot \dots$
 - Grouping the two qubit gates that act on each pair of qubits together and $Tr[A \otimes B] = Tr[A] \cdot Tr[B]$
- By Fact 1, all of these expectations except the first are 1, the first is $\frac{1}{4E}$
 - So the total score is $\sim \frac{1}{15d}$

Consequences of XQUATH algorithm

- Notice that the classical algorithm simply computes value of single path in the Pauli basis (takes time $O(n \cdot d)$)
- Algorithm achieves XScore of $\frac{1}{2^{O(d)}}$
- If circuit depth is sublinear, then this is a higher score than $\frac{1}{2^n}$ contradicting **XQUATH**!

Comments & Open Directions

- A similar algorithm achieves a score of $2^{-O(d)}$ on **XEB** but this algorithm is not yet practical i.e., it doesn't spoof current experiments can we improve this?
- How hard is achieving a sufficiently large constant score on **XEB** for random quantum circuits with super-constant depth? Recall this is what a *noiseless* random quantum circuit achieves by sampling!
- There's an alternative spoofing method due to [Pan-Chen-Zhang '21], which uses a clever tensor contraction method to simulate Google's 53 qubit XEB score on supercomputer in a reasonably short amount of time but takes considerably longer for the USTC 60 qubit experiment

5. Easiness argument 2 (classical algorithms taking advantage of uncorrected noise)

Uncorrected noise defines the NISQ era

- Without error-correction noise eventually overwhelms
 - e.g., Google's RCS experiment ~0.2% signal and 99.8% noise
- Can uncorrected noise help us to classical simulate near-term quantum experiments?
- That is, consider fixing a noise model and for RCS a reasonable choice is depolarizing noise
 - e.g., Each layer of random gates is followed by layer of single qubit depolarizing noise channel with **constant noise** strength γ :
 - $\mathcal{E}(\rho) = (1 \gamma)\rho + \frac{\gamma I}{2}Tr[\rho]$
 - Note that $\mathcal{E}(I)=I$ but $\mathcal{E}(P)=(1-\gamma)P$ for $P\in\{X,Y,Z\}$

Quantifying the effects of uncorrected noise

- Intuitively, uncorrected depolarizing noise increases entropy. As our circuit gets deeper the output distribution converges to uniform
- Main question: how quickly does this happen?
- We've known since the late 90's that the **noisy quantum circuit distribution** with depth d and the **uniform distribution** are $\leq 2^{-\gamma d}$ close in TVD [Aharonov et. al. '96]
- This rules out scalable noisy quantum advantage at <u>super-logarithmic</u> depth
- What about random circuits? Could the convergence be faster?
 - Numerical evidence that convergence to uniform happens faster [Boixo et. al. '17]
 - i.e., TVD upper bounded by $\leq 2^{-\gamma \cdot d \cdot n}$ whp over C
 - This would rule out scalable noisy quantum advantage at any depth!

How much depth is required for quantum advantage?

- Anticoncentration is one ingredient of current hardness of sampling arguments that requires sufficiently deep random circuits (with Haar random gates)
- A distribution over circuits anticoncentrates if:
 - There exists constants $\alpha \in (0,1], c>0$ so that $\Pr_{\mathcal{C}}\left[p_{0^n}(\mathcal{C}) \geq \frac{\alpha}{2^n}\right] \geq c$
 - Notice this is not sufficient for hardness e.g., the uniform distribution anticoncentrates!
 - Rather it's a sanity check that $\pm O(2^{-n})$ additive estimates to p_{0^n} aren't trivial!
- Until recently, we only knew **anticoncentration** for 2D circuits (with Haar random gates) happened at depth $\geq \sqrt{n}$ [Harrow & Mehraban '18]
- This is too deep for scalable noisy quantum advantage!
 - i.e., we know that the output distributions are $\leq 2^{-\gamma d} \sim 2^{-\sqrt{n}}$ close to uniform

Is there any hope for *fully scalable*, noisy quantum advantage from RCS?

- Consequently until last year, there was little optimism that we could get such an advantage
 - Rather we hope for "Goldilocks" system sizes to keep the system from getting too noisy
- Then two results rekindled some hope at log(n) depth...
 - 1. Anticoncentration at log(n) depth [Barak et. al. '21][Dalzell et. al. '22]
 - 2. TVD between noisy random circuit distribution and uniform is *lower bounded* by $2^{-O(d)}$ whp [Deshpande et. al. '22]
 - Matches the Aharonov et. al. '96 upper bound and rules out faster convergence rates

Goldilocks and the three bears

Can a classical algorithm beat uniform sampling at depth $\log n$?

- For $d = O(\log(n))$ depth noisy circuits we know that the uniform distribution is $2^{-O(d)} = \frac{1}{n^c}$ close in TVD to the output distribution by [Aharonov et. al. '96] upper bound
- But it was possible that quantum advantage persists for sampling from a distribution $\frac{1}{n^{c'}}$ -close in TVD to the noisy output distribution for some sufficiently large constant c'>c
- This possibility has recently been ruled out by very recent work of [Aharonov et. al. '22], featured at this year's QIP

The [Aharonov, Landau, Liu, Vazirani'22] algorithm

- [Aharonov et. al. '22] give a classical algorithm for sampling from a distribution $\epsilon-close$ to the distribution of noisy random quantum circuits in $poly\left(n,\frac{1}{\epsilon}\right)$ time modulo several caveats
- This hides a factor of $n^{1/\gamma}$ with noise-rate γ , which keeps the algorithm from being competitive with near-term experiments
- Also algorithm requires anticoncentration, so is only efficient and useful (i.e., beats uniform sampling) at log(n) depth
- Finally, algorithm requires certain constraints on the gate set (satisfied e.g., by Haar random gates)

Main ideas of [Aharonov et. al. '22]

- Key observation [Gao & Duan'18][Aharonov et. al. '22]: Output probabilities (and marginals) of noisy random quantum circuits in Pauli basis have most mass on a small number of paths, rest of the paths are exponentially suppressed
- Recall notation: in Pauli basis $p_{x}(C) = \sum_{s \in P_{n}^{d+1}} f(C, s, x)$
- Then by definition of depolarizing noise, the noisy output probability: $\tilde{p}_x = \sum_{s \in P_n^{d+1}} (1-\gamma)^{|s|} f(C,s,x)$
 - Where $|\ddot{s}|$ is the Hamming weight, or number of non-Identity Paulis in path
- Main idea: To compute p_{χ} simply throw away high-weight Pauli terms and exactly compute the low weight terms!
- i.e., for appropriate cutoff, ℓ , compute $\overline{q_x} = \sum_{s:|s| \le \ell} (1-\gamma)^{|s|} f(C,s,x)$

Analysis of the [Aharonov et. al. '22] algorithm

- Recall the algorithm works by truncating the Pauli path integral of each noisy output probability, then computing each truncated probability path by path
- Analysis in two steps:
 - 1. Upper bound the TVD, $|\tilde{p}-\bar{q}|_1$ as a function of the truncation parameter ℓ
 - 2. Upper bound the running time of the algorithm as a function of ℓ

Step 1: How to set cutoff ℓ to bound TVD

```
• Goal is to obtain upper bound on |\tilde{p} - \bar{q}|_1 = \Delta
• E_C[\Delta^2] \leq 2^n E_C \left[ \sum_{x \in \{0,1\}^n} (\tilde{p}_x - \bar{q}_x)^2 \right] (by Cauchy-Schwarz)
• = 2^n E_C \left[ \sum_x \left( \sum_{s:|s| > \ell} (1 - \gamma)^{|s|} f(C, s, x) \right)^2 \right] (by definition of \tilde{p}_x and \bar{q}_x)
• = 2^n E_C \left[ \sum_x \sum_{s:|s| > \ell} (1 - \gamma)^{2|s|} f(C, s, x)^2 \right] (orthog. of Pauli paths, Fact 2)
• = \sum_{k > \ell} (1 - \gamma)^{2k} W_k (rewriting, where W_k is "Fourier weight")
• \leq (1 - \gamma)^{2\ell} \sum_{k > \ell} W_k (since k > \ell)
• \leq e^{-2\gamma\ell} \cdot O(1) (nontrivial upper bound on W_k follows from anticoncentration)
```

• So can take $\ell \approx \frac{1}{\gamma} \cdot \log\left(\frac{1}{\epsilon}\right)$ to obtain $\Delta \leq \epsilon$ with high probability by Markov

Step 2: How to compute truncated prob., \bar{q}_{x} ?

- Algorithm works by computing value of each path in truncated probability
- How many terms in $\overline{q}_x = \sum_{s:|s| \le \ell} (1 \gamma)^{|s|} f(C, s, x)$?
- Number of paths with Hamming weight at most ℓ is $\leq \ell \cdot \binom{n(d+1)}{\ell} \cdot 3^{\ell}$
 - Since each path has n(d+1) Pauli operators and we're choosing ℓ to be non-identity & there are 3^ℓ different sequences of operators $\{X,Y,Z\}^\ell$
 - Takes $O(n \cdot d)$ time to compute each path
- Total time dominated by # of paths $\sim (n \cdot d)^{O(\ell)} \sim n^{\frac{1}{\gamma} \log \left(\frac{1}{\epsilon}\right)}$ if $\ell = \frac{1}{\gamma} \log \left(\frac{1}{\epsilon}\right)$
- Can improve dependence to $2^{O(\ell)}$ by being be more clever uses anticoncentration and the fact that many paths contribute 0 to the path integral (related to Fact 1).
 - Notice by choice of ℓ that this is exponential in $\frac{1}{\gamma}$ as well

Comments & Open Directions

- This algorithm applies to constant noise rates. For $\gamma = \tilde{O}\left(\frac{1}{n}\right)$ there's evidence for hardness of sampling [Dalzell et. al. '21]
- This algorithm doesn't spoof near-term RCS experiments due to scaling of runtime with noise rate – can we improve this dependence?
- Can we generalize the Aharonov et. al. algorithm to other noise models besides depolarizing?
 - See e.g., our extremely recent paper where we do this for Boson Sampling (arXiv: 2301.11532)
 - But still don't know how to do this for other noise models (e.g., Boson Sampling with photon loss)
- Can we generalize the Aharonov et. al. algorithm to gate sets that are very far from Haar random?
 - E.g., See our work with [Haferkamp et. al. '19] for a candidate architecture that anticoncentrates at constant depth...
- How hard are noisy random circuits with sublogarithmic depth and Haar random gates?
 - Not covered by this algorithm because of anticoncentration is known to fail here [Dalzell et. al. '21][Deshpande et. al. '22]!
- Most generally, is fully scalable quantum advantage possible without error mitigation, for any experiment?

More work I hope you check out!

- Hardness of Gaussian Boson Sampling experiments: e.g.,
 - Our work on this [Deshpande et. al. '21, arXiv: 2102.12474]
 - "Bipartite GBS" [Grier et. al.'21, arXiv: 2110.06964]
- Verifying and spoofing current Boson Sampling experiments: e.g.,
 - Efficiently distinguishing Boson Sampling distribution from uniform [Aaronson Arkhipov '13, arXiv:1309.7460]
 - Our work on spoofing XEB in Boson Sampling (Oh et. al.'22, arXiv: 2210.15021)
- Useful applications of quantum advantage experiments? e.g.,
 - Molecular vibronic spectra problem via Boson Sampling
 - See original proposal of [J.Huh et. al., arXiv: 1412.8427]
 - See our quantum inspired classical algorithm for this problem, as well as alternative quantum chemistry problems that still might be classically hard [Oh et. al., arXiv: 2202.01861]
 - Certified random number generation from Random Circuit Sampling
 - see proposal of Aaronson (e.g., talk at Simons Institute '20)
 - our work providing evidence for this proposal [Bassirian et. al. '22, arXiv: 2111.14846])

Thanks!